Metal complexing agents as therapies for Alzheimer's disease

被引:271
作者
Bush, AI [1 ]
机构
[1] Univ Melbourne, Mental Hlth Res Inst Victoria, Oxidat Disorders Res Unit, Parkville, Vic 3052, Australia
关键词
amyloid; Alzheimer's disease; copper; zinc; oxidation; hydrogen peroxide; superoxide dismutase;
D O I
10.1016/S0197-4580(02)00120-3
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Modern research approaches into drug development for Alzheimer's disease (AD) target beta-amyloid (Abeta) accumulation in the brain. The main approaches attempt to prevent Abeta production (secretase inhibitors) or to clear Abeta (vaccine). However, there is now compelling evidence that Abeta does not spontaneously aggregate, but that there is an age-dependent reaction with excess brain metal (copper, iron and zinc), which induces the protein to precipitate into metal-enriched masses (plaques). The abnormal combination of Abeta with Cu or Fe induces the production of hydrogen peroxide, which may mediate the conspicuous oxidative damage to the brain in AD. We have developed metal-binding compounds that inhibit the in vitro generation of hydrogen peroxide by Abeta, as well as reverse the aggregation of the peptide in vitro and from human brain post-mortem specimens. Most recently, one of the compounds, clioquinol (CQ; a USP antibiotic) was given orally for 9 weeks to amyloid-bearing transgenic mice, and succeeded in markedly inhibiting Abeta accumulation. On the basis of these results, CQ is being tested in clinical trials. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:1031 / 1038
页数:8
相关论文
共 79 条
[1]   RELEASE OF ENDOGENOUS ZN-2+ FROM BRAIN-TISSUE DURING ACTIVITY [J].
ASSAF, SY ;
CHUNG, SH .
NATURE, 1984, 308 (5961) :734-736
[2]  
Atwood CS, 2000, CELL MOL BIOL, V46, P777
[3]   Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis [J].
Atwood, CS ;
Moir, RD ;
Huang, XD ;
Scarpa, RC ;
Bacarra, NME ;
Romano, DM ;
Hartshorn, MK ;
Tanzi, RE ;
Bush, AI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :12817-12826
[4]   Characterization of copper interactions with Alzheimer amyloid β peptides:: Identification of an attomolar-affinity copper binding site on amyloid β1-42 [J].
Atwood, CS ;
Scarpa, RC ;
Huang, XD ;
Moir, RD ;
Jones, WD ;
Fairlie, DP ;
Tanzi, RE ;
Bush, AI .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (03) :1219-1233
[5]  
Atwood CS, 1999, MET IONS BIOL SYST, V36, P309
[6]  
Bush AI, 1999, NEUROBIOL AGING, V20, P335
[7]  
BUSH AI, 1994, J BIOL CHEM, V269, P12152
[8]   RAPID INDUCTION OF ALZHEIMER A-BETA AMYLOID FORMATION BY ZINC [J].
BUSH, AI ;
PETTINGELL, WH ;
MULTHAUP, G ;
PARADIS, MD ;
VONSATTEL, JP ;
GUSELLA, JF ;
BEYREUTHER, K ;
MASTERS, CL ;
TANZI, RE .
SCIENCE, 1994, 265 (5177) :1464-1467
[9]  
BUSH AI, 1993, J BIOL CHEM, V268, P16109
[10]   Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice [J].
Cherny, RA ;
Atwood, CS ;
Xilinas, ME ;
Gray, DN ;
Jones, WD ;
McLean, CA ;
Barnham, KJ ;
Volitakis, I ;
Fraser, FW ;
Kim, YS ;
Huang, XD ;
Goldstein, LE ;
Moir, RD ;
Lim, JT ;
Beyreuther, K ;
Zheng, H ;
Tanzi, RE ;
Masters, CL ;
Bush, AI .
NEURON, 2001, 30 (03) :665-676