Sources and targets of reactive oxygen species in synaptic plasticity and memory

被引:247
作者
Kishida, Kenneth T.
Klann, Eric
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
[2] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol Physiol & Biophys, Houston, TX 77030 USA
关键词
D O I
10.1089/ars.2007.9.233
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increasing evidence suggests that reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, act as necessary signaling molecules in processes underlying cognition. Moreover, ROS have been shown to be necessary in molecular process underlying signal transduction, synaptic plasticity, and memory formation. Research from several laboratories suggests that NADPH oxidase is an important source of superoxide in the brain. Evidence is presented here to show that ROS are in fact important signaling molecules involved in synaptic plasticity and memory formation. Moreover, evidence that the NADPH oxidase complex is a key regulator of ROS generation in synaptic plasticity and memory formation is discussed. Understanding redox signaling in the brain, including the sources and molecular targets of ROS, are important for a full understanding of the signaling pathways that underlie synaptic plasticity and memory. Knowledge of ROS function in the brain also is critical for understanding aging and neurodegenerative diseases of the brain given that several of these disorders, including Alzheimer's disease and Parkinson disease, may be exacerbated by the unregulated generation of ROS.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 125 条
[1]   Expression and modulation of an NADPH oxidase in mammalian astrocytes [J].
Abramov, AY ;
Jacobson, J ;
Wientjes, F ;
Hothersall, J ;
Canevari, L ;
Duchen, MR .
JOURNAL OF NEUROSCIENCE, 2005, 25 (40) :9176-9184
[2]   Calcium signals induced by amylold β peptide and their consequences in neurons and astrocytes in culture [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1742 (1-3) :81-87
[3]   Prevalence, genetics and clinical presentation of chronic granulomatous disease in Sweden [J].
Ahlin, A ;
DeBoer, M ;
Roos, D ;
Leusen, J ;
Smith, CIE ;
Sundin, U ;
Rabbani, H ;
Palmblad, J ;
Elinder, G .
ACTA PAEDIATRICA, 1995, 84 (12) :1386-1394
[4]  
Albensi BC, 2000, SYNAPSE, V35, P151
[5]   NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox [J].
Anrather, J ;
Racchumi, G ;
Iadecola, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (09) :5657-5667
[6]   Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation [J].
Atkins, CM ;
Davare, MA ;
Oh, MC ;
Derkach, V ;
Soderling, TR .
JOURNAL OF NEUROSCIENCE, 2005, 25 (23) :5604-5610
[7]   The MAPK cascade is required for mammalian associative learning [J].
Atkins, CM ;
Selcher, JC ;
Petraitis, JJ ;
Trzaskos, JM ;
Sweatt, JD .
NATURE NEUROSCIENCE, 1998, 1 (07) :602-609
[8]   Glutamate neurotoxicity, oxidative stress and mitochondria [J].
Atlante, A ;
Calissano, P ;
Bobba, A ;
Giannattasio, S ;
Marra, E ;
Passarella, S .
FEBS LETTERS, 2001, 497 (01) :1-5
[9]   Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning [J].
Balschun, D ;
Wolfer, DP ;
Bertocchini, F ;
Barone, V ;
Conti, A ;
Zuschratter, W ;
Missiaen, L ;
Lipp, HP ;
Frey, JU ;
Sorrentino, V .
EMBO JOURNAL, 1999, 18 (19) :5264-5273
[10]   NOX3, a superoxide-generating NADPH oxidase of the inner ear [J].
Bánfi, B ;
Malgrange, B ;
Knisz, J ;
Steger, K ;
Dubois-Dauphin, M ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :46065-46072