Flows on hypergraphs

被引:24
作者
Cambini, R [1 ]
Gallo, G [1 ]
Scutella, MG [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO STAT & MATEMAT APPLICATA ECON,PISA,ITALY
关键词
flows; Leontief flows; hypergraphs; simplex algorithm;
D O I
10.1007/BF02614371
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the capacitated minimum cost flow problem on directed hypergraphs. We define spanning hypertrees so generalizing the spanning tree of a standard graph, and show that, like in the standard and in the generalized minimum cost flow problems, a correspondence exists between bases and spanning hypertrees. Then, we show that, like for the network simplex algorithms for the standard and for the generalized minimum cost flow problems, most of the computations performed at each pivot operation have direct hypergraph interpretations.
引用
收藏
页码:195 / 217
页数:23
相关论文
共 12 条
[1]  
Ahuja RK., 1993, NETWORK FLOWS THEORY
[2]   GRAPH ALGORITHMS FOR FUNCTIONAL DEPENDENCY MANIPULATION [J].
AUSIELLO, G ;
DATRI, A ;
SACCA, D .
JOURNAL OF THE ACM, 1983, 30 (04) :752-766
[3]  
CAMBINI R, 1992, TR192 U PIS DIP INF
[4]   DIRECTED HYPERGRAPHS AND APPLICATIONS [J].
GALLO, G ;
LONGO, G ;
PALLOTTINO, S ;
NGUYEN, S .
DISCRETE APPLIED MATHEMATICS, 1993, 42 (2-3) :177-201
[5]  
GALLO G, 1996, RICERCA OPERATIVA, V78, P21
[6]  
Gallo G., 1990, TR2890 U PIS DIP INF
[7]   GAINFREE LEONTIEF SUBSTITUTION FLOW PROBLEMS [J].
JEROSLOW, RG ;
MARTIN, K ;
RARDIN, RL ;
WANG, JC .
MATHEMATICAL PROGRAMMING, 1992, 57 (03) :375-414
[8]  
KENNINGTON JL, 1980, ALGORITHMS NETWORK P, pCH7
[9]  
KOEHLER GJ, 1975, OPTIMIZATION LEONTIE
[10]  
Lawler EL., 2001, Combinatorial optimization: networks and matroids