Alternative representations of discrete fuzzy measures for decision making

被引:125
作者
Grabisch, M [1 ]
机构
[1] THOMSON CSF,CENT RES LAB,F-91404 ORSAY,FRANCE
关键词
fuzzy measure; k-order additive measure; pseudo-Boolean function; Mobius inversion formula; Shapley value; interaction index; Choquet integral; multicriteria decision making;
D O I
10.1142/S0218488597000440
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces three different representations of fuzzy measures, through the Mobius transformation, and the expression of importance and interaction. This leads naturally to the concept of k-order additive measures. It is shown how these concepts can be used in decision making, especially multicriteria evaluation.
引用
收藏
页码:587 / 607
页数:21
相关论文
共 33 条
[1]  
Aumann R. J., 1974, Values of Non-Atomic Games
[2]  
Banzhaf JF, 1965, Rutgers Law Review, V19, P317
[3]   SOME CHARACTERIZATIONS OF LOWER PROBABILITIES AND OTHER MONOTONE CAPACITIES THROUGH THE USE OF MOBIUS-INVERSION [J].
CHATEAUNEUF, A ;
JAFFRAY, JY .
MATHEMATICAL SOCIAL SCIENCES, 1989, 17 (03) :263-283
[4]  
Choquet G., 1954, Annales de l'institut Fourier, V5, P131, DOI DOI 10.5802/AIF.53
[5]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&
[6]  
DENNEBERG D, UNPUB MATH OPERATION
[7]  
Denneberg D., 1994, NONADDITIVE MEASURE
[8]   SOCIAL CHOICE AXIOMS FOR FUZZY SET AGGREGATION [J].
DUBOIS, D ;
KONING, JL .
FUZZY SETS AND SYSTEMS, 1991, 43 (03) :257-274
[9]  
DUBOIS D, 1985, POSSIBILITY THEORY
[10]  
GILBOA I, 1987, J MATH ECON, V16, P65, DOI 10.1016/0304-4068(87)90022-X