Joint segmentation of multivariate astronomical time series: Bayesian sampling with a hierarchical model

被引:32
作者
Dobigeon, Nicolas [1 ]
Tourneret, Jean-Yves
Scargle, Jeffrey D.
机构
[1] TeSA, ENSEEIHT, IRIT, F-31071 Toulouse 7, France
[2] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA
关键词
Gibbs sampling; hierarchical Bayesian analysis; Markov chain Monte Carlo; photon counting data; segmentation;
D O I
10.1109/TSP.2006.885768
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Astronomy and other sciences often face the problem of detecting and characterizing structure in two. or more related time series. This paper approaches such problems using Bayesian priors to represent relationships between signals with various degrees of certainty, and not just rigid constraints. The segmentation is conducted by using a hierarchical Bayesian approach to a piece- wise constant Poisson rate model. A Gibbs sampling strategy allows joint estimation of the unknown parameters and hyperparameters. Results obtained with synthetic and real photon counting data illustrate the performance of the proposed algorithm.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 2001, Journal of the European Mathematical Society, DOI DOI 10.1007/S100970100031
[2]  
Basseville M, 1993, DETECTION ABRUPT CHA
[3]  
Brodsky BE., 1993, Nonparametric Methods in Change Point Problems
[4]   An MCMC sampling approach to estimation of nonstationary hidden Markov models [J].
Djuric, PM ;
Chun, JH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (05) :1113-1123
[5]  
DJURIC PM, 1994, P IEEE INT C AC SPEE, V4, P505
[6]   Exact Bayesian curve fitting and signal segmentation [J].
Fearnhead, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (06) :2160-2166
[7]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[8]  
Gelman A., 1992, Statistical Science, V7, DOI [DOI 10.1214/SS/1177011136, 10.1214/ss/1177011136]
[9]   Statistical reconstruction and analysis of autoregressive signals in impulsive noise using the Gibbs sampler [J].
Godsill, SJ ;
Rayner, PJW .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1998, 6 (04) :352-372
[10]   An algorithm for optimal partitioning of data on an interval [J].
Jackson, B ;
Scargle, JD ;
Barnes, D ;
Arabhi, S ;
Alt, A ;
Gioumousis, P ;
Gwin, E ;
Sangtrakulcharoen, P ;
Tan, L ;
Tsai, TT .
IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (02) :105-108