The spindle-assembly checkpoint of the cell cycle develops in Xenopus Iaevis embryos at the midblastula transition (MET). Our previous experiments using animal-cap blastomeres indicate that the checkpoint is regulated by a mechanism that depends on age, but not on the nucleocytoplasmic (N/C) ratio (Clute and Masui, 1995). In the present study, the time of appearance of the spindle-assembly checkpoint is examined in animal-cap blastomeres whose N/C ratio is reduced by treatment with aphidicolin. Animal-cap blastomeres treated with aphidicolin from the 2-cell stage cleave more slowly after 4th cleavage, in a dose-dependent manner, but cleavage and chromosome cycles continue up to the 11th to 13th cleavage and then arrest. Blastomeres treated with aphidicolin have a reduced DNA content and N/C ratio compared to control blastomeres of the same age. Nevertheless, nocodazole-sensitive chromosome cycles appear at the same time as in control blastomeres, at 3 to 5 hr after 5th cleavage, regardless of the N/C ratio. The arrest in interphase caused by treating blastula stage animal caps with aphidicolin can be reversed by treatment with caffeine. The caffeine-induced mitosis becomes sensitive to nocodazole after the MET, but not before. Therefore, the same mechanism which stabilizes maturation-promoting factor activity in the absence of a mitotic spindle also operates after the MBT in blastomeres that are treated with aphidicolin, if mitosis is induced by caffeine. This mechanism may involve the translation of a maternal mRNA at the time of the MET, as suggested previously. (C) 1997 Academic Press.