Mvb12 is a novel member of ESCRT-I involved in cargo selection by the multivesicular body pathway

被引:39
作者
Oestreich, Andrea J. [1 ]
Davies, Brian A. [1 ]
Payne, Johanna A. [1 ]
Katzmann, David J. [1 ]
机构
[1] Mayo Clin, Coll Med, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
关键词
D O I
10.1091/mbc.E06-07-0601
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The multivesicular body (MVB) sorting pathway impacts a variety of cellular functions in eukaryotic cells. Perhaps the best understood role for the MVB pathway is the degradation of transmembrane proteins within the lysosome. Regulation of cargo selection by this pathway is critically important for normal cell physiology, and recent advances in our understanding of this process have highlighted the endosomal sorting complexes required for transport (ESCRTs) as pivotal players in this reaction. To better understand the mechanisms of cargo selection during MVB sorting, we performed a genetic screen to identify novel factors required for cargo-specific selection by this pathway and identified the Mvb12 protein. Loss of Mvb12 function results in differential defects in the selection of MVB cargoes. A variety of analyses indicate that Mvb12 is a stable member of ESCRT-I, a heterologous complex involved in cargo selection by the MVB pathway. Phenotypes displayed upon loss of Mvb12 are distinct from those displayed by the previously described ESCRT-I subunits (vacuolar protein sorting 23, -28, and -37), suggesting a distinct function than these core subunits. These data support a model in which Mvb12 impacts the selection of MVB cargoes by modulating the cargo recognition capabilities of ESCRT-I.
引用
收藏
页码:646 / 657
页数:12
相关论文
共 46 条
[1]   Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta 1 [J].
Azmi, I ;
Davies, B ;
Dimaano, C ;
Payne, J ;
Eckert, D ;
Babst, M ;
Katzmann, DJ .
JOURNAL OF CELL BIOLOGY, 2006, 172 (05) :705-717
[2]   Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body [J].
Babst, M ;
Katzmann, DJ ;
Snyder, WB ;
Wendland, B ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :283-289
[3]   A protein's final ESCRT [J].
Babst, M .
TRAFFIC, 2005, 6 (01) :2-9
[4]   ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting [J].
Babst, M ;
Katzmann, DJ ;
Estepa-Sabal, EJ ;
Meerloo, T ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :271-282
[5]   Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking [J].
Babst, M ;
Odorizzi, G ;
Estepa, EJ ;
Emr, SD .
TRAFFIC, 2000, 1 (03) :248-258
[6]   Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p [J].
Babst, M ;
Sato, TK ;
Banta, LM ;
Emr, SD .
EMBO JOURNAL, 1997, 16 (08) :1820-1831
[7]   The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor down-regulation [J].
Bache, KG ;
Slagsvold, T ;
Cabezas, A ;
Rosendal, KR ;
Raiborg, C ;
Stenmark, H .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (09) :4337-4346
[8]   Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes [J].
Bache, KG ;
Brech, A ;
Mehlum, A ;
Stenmark, H .
JOURNAL OF CELL BIOLOGY, 2003, 162 (03) :435-442
[9]   Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome [J].
Bilodeau, PS ;
Winistorfer, SC ;
Kearney, WR ;
Robertson, AD ;
Piper, RC .
JOURNAL OF CELL BIOLOGY, 2003, 163 (02) :237-243
[10]   The Vps27p-Hse1p complex binds ubiquitin and mediates endosomal protein sorting [J].
Bilodeau, PS ;
Urbanowski, JL ;
Winistorfer, SC ;
Piper, RC .
NATURE CELL BIOLOGY, 2002, 4 (07) :534-539