Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells

被引:70
作者
Borole, Abhijeet P. [1 ]
Mielenz, Jonathan R. [1 ]
Vishnivetskaya, Tatiana A. [1 ]
Hamilton, Choo Y. [2 ]
机构
[1] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Knoxville, TN 37996 USA
关键词
ELECTRICITY-GENERATION; HYDROGEN-PRODUCTION; PRETREATMENT; MICROORGANISMS; PERFORMANCE; TECHNOLOGY; CHALLENGES; CATHODES; PROGRAM; ACETATE;
D O I
10.1186/1754-6834-2-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results: Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4-hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700 mW/m(2) (356 W/m(3) net anode volume) and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by delta-Proteobacteria (50%), along with beta-Proteobacteria (28%), alpha-Proteobacteria (14%), gamma-Proteobacteria (6%) and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20 mM) with near complete removal, while maintaining long-term stability with respect to power production. Conclusion: Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water recycle and 3) electricity production up to 25% of total biorefinery power needs.
引用
收藏
页数:14
相关论文
共 53 条
[1]  
Aden A., 2002, Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, P88
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]   Diversifying biological fuel cell designs by use of nanoporous filters [J].
Biffinger, Justin C. ;
Ray, Ricky ;
Little, Brenda ;
Ringeisen, Bradley R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (04) :1444-1449
[4]   Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site [J].
Bond, PL ;
Smriga, SP ;
Banfield, JF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (09) :3842-3849
[5]   Three-dimensional, gas phase fuel cell with a laccase biocathode [J].
Borole, Abhijeet P. ;
LaBarge, Samuel ;
Spott, Benjamin A. .
JOURNAL OF POWER SOURCES, 2009, 188 (02) :421-426
[6]  
BOROLE AP, 2009, J POWER SOU IN PRESS
[7]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[8]   Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells [J].
Catal, Tunc ;
Fan, Yanzhen ;
Li, Kaichang ;
Bermek, Hakan ;
Liu, Hong .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :162-166
[9]   Minimizing losses in bio-electrochemical systems: the road to applications [J].
Clauwaert, Peter ;
Aelterman, Peter ;
Pham, The Hai ;
De Schamphelaire, Liesje ;
Carballa, Marta ;
Rabaey, Korneel ;
Verstraete, Willy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 79 (06) :901-913
[10]   Open air biocathode enables effective electricity generation with microbial fuel cells [J].
Clauwaert, Peter ;
Van der Ha, David ;
Boon, Nico ;
Verbeken, Kim ;
Verhaege, Marc ;
Rabaey, Korneel ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (21) :7564-7569