Relaxation to equilibrium for two dimensional disordered Ising systems in the Griffiths phase

被引:15
作者
Cesi, F
Maes, C
Martinelli, F
机构
[1] KATHOLIEKE UNIV LEUVEN,INST THEORET FYS,B-3001 LOUVAIN,BELGIUM
[2] UNIV AQUILA,DIPARTIMENTO ENERGET,I-67100 LAQUILA,ITALY
关键词
D O I
10.1007/s002200050205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Glauber-type dynamics for two dimensional disordered magnets of Ising type, We prove that, if the disorder-averaged influence of the boundary condition is sufficiently small in the equilibrium system, then the corresponding Glauber dynamics is ergodic with probability one and the disorder-average C(t) of time-autocorrelation function satisfies C(t) less than or similar to e(-m(log t)2) (for large t). For the standard two dimensional dilute Ising ferromagnet with i.i.d. random nearest neighbor couplings taking the values 0 or J(0) > 0, our results apply even if the active bonds percolate and J(0) is larger than the critical value J(c) of the corresponding pure Ising model. For the same model we also prove that in the whole Griffiths' phase the previous upper bound is optimal. This implies the existence of a dynamical phase transition which occurs when J crosses J(c).
引用
收藏
页码:323 / 335
页数:13
相关论文
共 30 条
  • [1] THE PHASE-BOUNDARY IN DILUTE AND RANDOM ISING AND POTTS FERROMAGNETS
    AIZENMAN, M
    CHAYES, JT
    CHAYES, L
    NEWMAN, CM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (05): : L313 - L318
  • [2] THE PHASE-TRANSITION IN A GENERAL-CLASS OF ISING-TYPE MODELS IS SHARP
    AIZENMAN, M
    BARSKY, DJ
    FERNANDEZ, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) : 343 - 374
  • [3] BASSALYGO L, 1986, THEOR PROBAB APPL, V31, P572
  • [4] UPPER AND LOWER BOUNDS ON DYNAMIC CORRELATIONS IN THE GRIFFITHS PHASE
    BRAY, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (03): : L81 - L85
  • [5] DYNAMICS OF DILUTE MAGNETS ABOVE TC
    BRAY, AJ
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (08) : 720 - 723
  • [6] On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point
    Cesi, F
    Guadagni, G
    Martinelli, F
    Schonmann, RH
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) : 55 - 102
  • [7] CESI F, 1996, IN PRESS COMMUN MATH
  • [8] STRETCHED EXPONENTIAL RELAXATION IN SYSTEMS WITH RANDOM FREE-ENERGIES
    DEDOMINICIS, C
    ORLAND, H
    LAINEE, F
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (11): : L463 - L466
  • [9] GRIFFITHS SINGULARITIES IN THE DYNAMICS OF DISORDERED ISING-MODELS
    DHAR, D
    RANDERIA, M
    SETHNA, JP
    [J]. EUROPHYSICS LETTERS, 1988, 5 (06): : 485 - 490
  • [10] FROHLICH J, 1986, CRITICAL PHENOMENA R