Poly(3-methylthiophene)/MnO2 composite electrodes as electrochemical capacitors

被引:56
作者
Rios, Emerson C. [1 ]
Rosario, Adriane V. [1 ]
Mello, Regina M. Q. [1 ]
Micaroni, Liliana [1 ]
机构
[1] Univ Fed Parana, Dept Quim, Lab Eletroquim Aplicadaq & Polimeros, BR-81531990 Curitiba, Parana, Brazil
关键词
electrochemical capacitors; manganese oxide; poly(3-methylthiophene); pseudocapacitance;
D O I
10.1016/j.jpowsour.2006.09.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite electrodes prepared by electrodeposition of manganese oxide on titanium substrates modified with poly(3-methylthiophene) (PMeT) were investigated and compared with Ti/MnO2 electrodes. The polymer films were prepared by galvanostatic deposition at 2 mA cm(-2) with different deposition charges (250 and 1500 mC cm(-2)). The electrodes were characterized by cyclic voltarnmetry in 1 mol L-1 Na2SO4 and by scanning electron microscopy. The results show a very significant improvement in the specific capacitance of the oxide due the presence of the polymer coating. For Ti/MnO2 the specific capacitance was of 122 Fg(-1), while Ti/PMeT250/MnO2 and Ti/PMeT1500/MnO2 displayed values of 218 and 66 F g(-1), respectively. If only oxide mass is considered, the capacitances of the composite electrode increases to 381 and 153 F g(-1), respectively. The micrographs of samples show that the polymer coating leads to very significant changes in the morphology of the oxide deposit, which in consequence, generate the improvement observed in the charge storage property. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1137 / 1142
页数:6
相关论文
共 50 条
[1]   High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole [J].
An, KH ;
Jeon, KK ;
Heo, JK ;
Lim, SC ;
Bae, DJ ;
Lee, YH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1058-A1062
[2]   New trends in electrochemical supercapacitors [J].
Arbizzani, C ;
Mastragostino, M ;
Soavi, F .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :164-170
[3]   Variations in MnO2 electrodeposition for electrochemical capacitors [J].
Broughton, JN ;
Brett, MJ .
ELECTROCHIMICA ACTA, 2005, 50 (24) :4814-4819
[4]   Porous electrodes-based double-layer supercapacitors:: pore structure versus series resistance [J].
Celzard, A ;
Collas, F ;
Marêché, JF ;
Furdin, G ;
Rey, I .
JOURNAL OF POWER SOURCES, 2002, 108 (1-2) :153-162
[5]   Solid-state, polymer-based, redox capacitors [J].
Clemente, A ;
Panero, S ;
Spila, E ;
Scrosati, B .
SOLID STATE IONICS, 1996, 85 (1-4) :273-277
[6]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[7]   The role and utilization of pseudocapacitance for energy storage by supercapacitors [J].
Conway, BE ;
Birss, V ;
Wojtowicz, J .
JOURNAL OF POWER SOURCES, 1997, 66 (1-2) :1-14
[8]   SURFACE AND BULK PROCESSES AT OXIDIZED IRIDIUM ELECTRODES .2. CONDUCTIVITY-SWITCHED BEHAVIOR OF THICK OXIDE-FILMS [J].
CONWAY, BE ;
MOZOTA, J .
ELECTROCHIMICA ACTA, 1983, 28 (01) :9-16
[9]   Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device [J].
Du Pasquier, A ;
Laforgue, A ;
Simon, P .
JOURNAL OF POWER SOURCES, 2004, 125 (01) :95-102
[10]   Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes [J].
Du Pasquier, A ;
Plitz, I ;
Gural, J ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 113 (01) :62-71