Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations

被引:28
作者
Kashkina, Ekaterina
Anikin, Michael
Tahirov, Tahir H.
Kochetkov, Sergei N.
Vassylyev, Dmitry G.
Temiakov, Dmitry [1 ]
机构
[1] Univ Med & Dent New Jersey, Sch Osteopath Med, Dept Cell Biol, Stratford, NJ 08084 USA
[2] Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia
[3] SPring 8, Sayo, Hyogo 6795148, Japan
[4] Univ Nebraska Med Ctr, Lied Transplant Ctr, Eppley Inst Res Canc & Allied Dis, Med Ctr 10737A,Nebraska Med Ctr 986805, Omaha, NE 68198 USA
[5] Univ Alabama Birmingham, Dept Biochem & Mol Genet, Sch Med, Birmingham, AL 35294 USA
[6] Univ Alabama Birmingham, Sch Dent, Birmingham, AL 35294 USA
[7] RIKEN, Struct & Mol Biol Lab, Harima Inst, SPring 8, Sayo, Hyogo 6795148, Japan
关键词
D O I
10.1093/nar/gkl559
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have characterized elongation complexes (ECs) of RNA polymerase from the extremely thermophilic bacterium, Thermus thermophilus. We found that complexes assembled on nucleic acid scaffolds are transcriptionally competent at high temperature (50-80 degrees C) and, depending upon the organization of the scaffold, possess distinct translocation conformations. ECs assembled on scaffolds with a 9 bp RNA:DNA hybrid are highly stable, resistant to pyrophosphorolysis, and are in the posttranslocated state. ECs with an RNA:DNA hybrid longer or shorter than 9 bp appear to be in a pretranslocated state, as evidenced by their sensitivity to pyrophosphorolysis, GreA-induced cleavage, and exonuclease footprinting. Both pretranslocated (8 bp RNA:DNA hybrid) and posttranslocated (9 bp RNA:DNA hybrid) complexes were crystallized in distinct crystal forms, supporting the homogeneity of the conformational states in these complexes. Crystals of a posttranslocated complex were used to collect diffraction data at atomic resolution.
引用
收藏
页码:4036 / 4045
页数:10
相关论文
共 46 条
[1]   Direct observation of base-pair stepping by RNA polymerase [J].
Abbondanzieri, EA ;
Greenleaf, WJ ;
Shaevitz, JW ;
Landick, R ;
Block, SM .
NATURE, 2005, 438 (7067) :460-465
[2]   Structural basis for transcription regulation by alarmone ppGpp [J].
Artsimovitch, I ;
Patlan, V ;
Sekine, SI ;
Vassylyeva, MN ;
Hosaka, T ;
Ochi, K ;
Yokoyama, S ;
Vassylyev, DG .
CELL, 2004, 117 (03) :299-310
[3]   A ratchet mechanism of transcription elongation and its control [J].
Bar-Nahum, G ;
Epshtein, V ;
Ruckenstein, AE ;
Rafikov, R ;
Mustaev, A ;
Nudler, E .
CELL, 2005, 120 (02) :183-193
[4]   Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J].
Campbell, EA ;
Korzheva, N ;
Mustaev, A ;
Murakami, K ;
Nair, S ;
Goldfarb, A ;
Darst, SA .
CELL, 2001, 104 (06) :901-912
[5]   Structure of a transcribing T7 RNA polymerase initiation complex [J].
Cheetham, GMT ;
Steitz, TA .
SCIENCE, 1999, 286 (5448) :2305-2309
[6]   RNA polymerase II structure: from core to functional complexes [J].
Cramer, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2004, 14 (02) :218-226
[7]   The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription [J].
Erie, DA .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1577 (02) :224-239
[8]   Variation in the size of nascent RNA cleavage products as a function of transcript length and elongation competence [J].
Gu, WG ;
Reines, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (51) :30441-30447
[9]   A model for the mechanism of polymerase translocation [J].
Guajardo, R ;
Sousa, R .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 265 (01) :8-19
[10]   Transcript cleavage by Thermus thermophilus RNA polymerase.: Effects of GreA and anti-GreA factors. [J].
Hogan, BP ;
Hartsch, T ;
Erie, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :967-975