Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds

被引:212
作者
Feng, Yan [1 ]
Mitchison, Timothy J. [2 ]
Bender, Andreas [3 ]
Young, Daniel W. [4 ]
Tallarico, John A. [1 ,5 ]
机构
[1] Novartis Inst Biomed Res, Dev & Mol Pathways, Cambridge, MA 02139 USA
[2] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[3] Leiden Univ, Leiden Amsterdam Ctr Drug Res, Div Med Chem, NL-2333 CC Leiden, Netherlands
[4] Wolf Greenfield & Sacks, Boston, MA 02210 USA
[5] Novartis Inst Biomed Res, Global Discovery Chem, Cambridge, MA 02139 USA
关键词
HIGH-THROUGHPUT; FLOW-CYTOMETRY; TARGET; PREDICTION; DISCOVERY; IDENTIFICATION; DIFFERENTIATION; CLASSIFICATION; INHIBITORS; INNOVATION;
D O I
10.1038/nrd2876
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling -including mRNA-, protein-and imaging-based multi-parameter profiling -in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.
引用
收藏
页码:567 / 578
页数:12
相关论文
共 82 条
[1]   High content screening applied to large-scale cell biology [J].
Abraham, VC ;
Taylor, DL ;
Haskins, JR .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (01) :15-22
[2]   Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors [J].
Bantscheff, Marcus ;
Eberhard, Dirk ;
Abraham, Yann ;
Bastuck, Sonja ;
Boesche, Markus ;
Hobson, Scott ;
Mathieson, Toby ;
Perrin, Jessica ;
Raida, Manfred ;
Rau, Christina ;
Reader, Valerie ;
Sweetman, Gavain ;
Bauer, Andreas ;
Bouwmeester, Tewis ;
Hopf, Carsten ;
Kruse, Ulrich ;
Neubauer, Gitte ;
Ramsden, Nigel ;
Rick, Jens ;
Kuster, Bernhard ;
Drewes, Gerard .
NATURE BIOTECHNOLOGY, 2007, 25 (09) :1035-1044
[3]   Chemogenomic data analysis: Prediction of small-molecule targets and the advent of biological fingerprints [J].
Bender, Andreas ;
Young, Daniel W. ;
Jenkins, Jeremy L. ;
Serrano, Martin ;
Mikhailov, Dmitri ;
Clemons, Paul A. ;
Davies, John W. .
COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2007, 10 (08) :719-731
[4]   Use of Ligand Based Models for Protein Domains To Predict Novel Molecular Targets and Applications To Triage Affinity Chromatography Data [J].
Bender, Andreas ;
Mikhailov, Dmitri ;
Glick, Meir ;
Scheiber, Josef ;
Davies, John W. ;
Cleaver, Stephen ;
Marshall, Stephen ;
Tallarico, John A. ;
Harrington, Edmund ;
Cornella-Taracido, Ivan ;
Jenkins, Jeremy L. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (05) :2575-2585
[5]   Gene expression profiling in the discovery, optimization and development of novel drugs: one universal screening platform [J].
Bol, D ;
Ebner, R .
PHARMACOGENOMICS, 2006, 7 (02) :227-235
[6]   CHEMILUMINESCENT AND BIOLUMINESCENT REPORTER GENE ASSAYS [J].
BRONSTEIN, I ;
FORTIN, J ;
STANLEY, PE ;
STEWART, GSAB ;
KRICKA, LJ .
ANALYTICAL BIOCHEMISTRY, 1994, 219 (02) :169-181
[7]  
Bugelski PJ, 2002, CURR OPIN DRUG DISC, V5, P79
[8]   Using genome-wide transcriptional profiling to elucidate small-molecule mechanism [J].
Butcher, RA ;
Schreiber, SL .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (01) :25-30
[9]   The use and analysis of microarray data [J].
Butte, A .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (12) :951-960
[10]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266