Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein

被引:109
作者
Mueller, U
Perl, D
Schmid, FX
Heinemann, U
机构
[1] Max Delbruck Ctr Mol Med, Forsch Grp Kristallog, D-13125 Berlin, Germany
[2] Univ Bayreuth, Biochem Lab, D-95440 Bayreuth, Germany
[3] Free Univ Berlin, Inst Chem Kristallog, D-14195 Berlin, Germany
关键词
cold shock protein; Bacillus caldolyticus; thermal stability; atomic-resolution crystal structure; electrostatic interactions;
D O I
10.1006/jmbi.2000.3602
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterial cold shock proteins are small compact beta-barrel proteins without disulfide bonds, cis-proline residues or tightly bound cofactors. Bc-Csp, the cold shock protein from the thermophile Bacillus caldolyticus shows a twofold increase in the free energy of stabilization relative to its homolog Bs-CspB from the mesophile Bacillus subtilis, although the two proteins differ by only 12 out of 67 amino acid residues. This pair of cold shock proteins thus represents a good system to study the atomic determinants of protein thermostability. Bs-CspB and Bc-Csp both unfold reversibly in cooperative transitions with T-M values of 49.0 degrees C and 77.3 degrees C, respectively, at pH 7.0. Addition of 0.5 M salt stabilizes Bs-CspB but destabilizes Bc-Csp. To understand these differences at the structural level, the crystal structure of Bc-Csp was determined at 1.17 Angstrom resolution and refined to R = 12.5 % (R(free) = 17.9 %). The molecular structures of Bc-Csp and Bs-CspB are virtually identical in the central P-sheet and in the binding region for nucleic acids. Significant differences are found in the distribution of surface charges including a sodium ion binding site present in Bc-Csp, which was not observed in the crystal structure of the Bs-CspB. Electrostatic interactions are overall favorable for Bc-Csp, but unfavorable for Bs-CspB. They provide the major source for the increased thermostability of Bc-Csp. This can be explained based on the atomic-resolution crystal structure of Bc-Csp. It identifies a number of potentially stabilizing ionic interactions including a cation-binding site and reveals significant changes in the electrostatic surface potential. (C) 2000 Academic Press.
引用
收藏
页码:975 / 988
页数:14
相关论文
共 58 条
[1]   THERMAL-STABILITY AND PROTEIN-STRUCTURE [J].
ARGOS, P ;
ROSSMANN, MG ;
GRAU, UM ;
ZUBER, H ;
FRANK, G ;
TRATSCHIN, JD .
BIOCHEMISTRY, 1979, 18 (25) :5698-5703
[2]   Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima:: the crystal structure at 2.1 Å resolution reveals strategies for intrinsic protein stabilization [J].
Auerbach, G ;
Ostendorp, R ;
Prade, L ;
Korndörfer, I ;
Dams, T ;
Huber, R ;
Jaenicke, R .
STRUCTURE, 1998, 6 (06) :769-781
[3]  
Auerbach G, 1997, BIOL CHEM, V378, P327
[4]   How Hofmeister ion interactions affect protein stability [J].
Baldwin, RL .
BIOPHYSICAL JOURNAL, 1996, 71 (04) :2056-2063
[5]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[6]   The complete genome of the hyperthermophilic bacterium Aquifex aeolicus [J].
Deckert, G ;
Warren, PV ;
Gaasterland, T ;
Young, WG ;
Lenox, AL ;
Graham, DE ;
Overbeek, R ;
Snead, MA ;
Keller, M ;
Aujay, M ;
Huber, R ;
Feldman, RA ;
Short, JM ;
Olsen, GJ ;
Swanson, RV .
NATURE, 1998, 392 (6674) :353-358
[7]   THE NA+ BINDING-SITE OF THROMBIN [J].
DICERA, E ;
GUINTO, ER ;
VINDIGNI, A ;
DANG, QD ;
AYALA, YM ;
WUYI, M ;
TULINSKY, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (38) :22089-22092
[8]   A superfamily of proteins that contain the cold-shock domain [J].
Graumann, PL ;
Marahiel, MA .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (08) :286-290
[9]   Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species [J].
Haney, PJ ;
Badger, JH ;
Buldak, GL ;
Reich, CI ;
Woese, CR ;
Olsen, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3578-3583
[10]   2.0 angstrom structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: Possible determinants of protein stability [J].
Hennig, M ;
Darimont, B ;
Sterner, R ;
Kirschner, K ;
Jansonius, JN .
STRUCTURE, 1995, 3 (12) :1295-1306