Equilibrative and concentrative nucleoside transporters mediate influx of extracellular cyclic ADP-ribose into 3T3 murine fibroblasts

被引:67
作者
Guida, L
Bruzzone, S
Sturla, L
Franco, L
Zocchi, E
De Flora, A
机构
[1] Univ Genoa, Biochem Sect, DIMES, Dept Expt Med, I-16132 Genoa, Italy
[2] Univ Genoa, Ctr Excellence Biomed Res, I-16132 Genoa, Italy
[3] Ist Giannina Gaslini, I-16147 Genoa, Italy
关键词
D O I
10.1074/jbc.M207793200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In mammals cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, is generated from NAD(+) at the outer cell surface by the multifunctional ectoenzyme CD38 and by related ADP-ribosyl cyclases. Recently, influx of extracellular cADPR has been observed in 3T3 murine fibroblasts, where it elicits Ca2+-mediated enhancement of proliferation. Here we addressed the nature and the properties of cADPR influx into CD38(-) 3T3 cells, which showed pleiotropic mechanisms of both equilibrative and concentrative transport. Based on selective inhibitors or experimental conditions (e.g. abrogation of Na+-dependent active symport processes and transient transfection experiments) and on reverse transcriptase-polymerase chain reaction analysis of transcripts in 3T3 fibroblasts and comparatively in HeLa cells, we identified cADPR-transporting activities with specific nucleoside transporters (NT), both equilibrative (ENT2) and concentrative (CNT2 and a nitrobenzylthioinosine (NBMPR)-inhibitable NT). A reciprocal inhibition relationship was observed between inosine and cADPR fluxes across these NT species. Concentrative (but not equilibrative) transport of nanomolar extracellular cADPR took place in CD38(-) 3T3 cells co-cultured for 48 h in transwells on feeders of CD38-transfected, cADPR-generating 3T3 fibroblasts. These results suggest possible, hitherto unrecognized, correlations between ectocellular metabolism of nucleotides/nucleosides and cADPR-mediated regulation of intracellular calcium homeostasis.
引用
收藏
页码:47097 / 47105
页数:9
相关论文
共 60 条
[1]   ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP(+) [J].
Aarhus, R ;
Graeff, RM ;
Dickey, DM ;
Walseth, TF ;
Lee, HC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (51) :30327-30333
[2]   Nucleoside transporters: molecular biology and implications for therapeutic development [J].
Baldwin, SA ;
Mackay, JR ;
Cass, CE ;
Young, JD .
MOLECULAR MEDICINE TODAY, 1999, 5 (05) :216-224
[3]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts [J].
Bruzzone, S ;
Franco, L ;
Guida, L ;
Zocchi, E ;
Contini, P ;
Bisso, A ;
Usai, C ;
De Flora, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (51) :48300-48308
[6]  
Bruzzone S, 2001, FASEB J, V15, P10
[7]   Generation, control, and processing of cellular calcium signals [J].
Carafoli, E ;
Santella, L ;
Branca, D ;
Brini, M .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2001, 36 (02) :107-260
[8]  
CASS CE, 1999, MEMBRANE TRANSPORTER, P313
[9]  
CRAWFORD CR, 1990, J BIOL CHEM, V265, P13730
[10]  
De Flora A, 2000, CHEM IMMUNOL, V75, P79