Monte Carlo evaluation of resampling-based hypothesis tests

被引:36
作者
Boos, DD [1 ]
Zhang, J
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Merck & Co Inc, Merck Sharp & Dohme Res Labs, Clin Biostat, Rahway, NJ 07065 USA
关键词
bootstrap; extrapolation; Monte Carlo test; permutation test; p value; power function; SIMEX;
D O I
10.2307/2669393
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Monte Carlo estimation of the power of tests that require resampling can be very computationally intensive. It is possible to reduce the size of the inner resampling loop as long as the resulting estimator of power can be corrected for bias. A simple linear extrapolation method is shown to perform well in correcting for bias and thus reduces computation time in Monte Carlo power studies.
引用
收藏
页码:486 / 492
页数:7
相关论文
共 9 条
[1]  
Barnard G. A., 1963, J R STAT SOC B, V25, P294
[2]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[3]  
EFRON B, 1985, JACKKNIFE BOOTSTRAP
[4]  
HALD A, 1968, J ROY STAT SOC B, V30, P359
[5]  
HALL P, 1989, J ROY STAT SOC B MET, V51, P459
[6]  
HOPE ACA, 1968, J ROY STAT SOC B, V30, P582
[7]   FINITE-SAMPLE PROPERTIES AND ASYMPTOTIC EFFICIENCY OF MONTE-CARLO TESTS [J].
JOCKEL, KH .
ANNALS OF STATISTICS, 1986, 14 (01) :336-347
[8]   A SEQUENTIAL APPROXIMATION TO A PERMUTATION TEST [J].
LOCK, RH .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1991, 20 (01) :341-363