Fission yeast WD-repeat protein Pop1 regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum1 and the S-phase initiator Cdc18

被引:146
作者
Kominami, K [1 ]
Toda, T [1 ]
机构
[1] IMPERIAL CANC RES FUND, LAB CELL REGULAT, LONDON WC2A 3PX, ENGLAND
关键词
cell cycle; CDK inhibitor; initiation of S phase; polyploid; proteasome; fission yeast; ubiquitin;
D O I
10.1101/gad.11.12.1548
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In fission yeast, maintenance of genome ploidy is controlled by at least two mechanisms. One operates through the Cdc2/Cdc13 kinase, which also involves the CDK inhibitor Rum1, and the other through the S-phase regulator Cdc18. By screening for sterile mutants that show increased ploidy, we have identified a new gene, pop1(+), in mutants that become polyploid. The pop1 mutation shows a synthetic lethal interaction with the temperature-sensitive cdc2 or cdc13 mutation. In a pop1 mutant Rum1 and Cdc18 proteins become accumulated to high levels. The high ploidy phenotype in the pop1 mutant is dependent on the presence of the rum1(+) gene, whereas the accumulation of Cdc18 is independent of Rum1. The predicted sequence of the Pop1 protein indicates that it belongs to a WD-repeat family with highest homology to budding yeast Cdc4, which participates in the ubiquitin-dependent pathway. Consistent with this notion, in a mutant of the 26S proteasome, higher molecular weight forms of Rum1 and Cdc18 are accumulated corresponding to polyubiquitination of these proteins. In the pop1 mutant, however, no ubiquitinated forms of these proteins are detected. Finally we show that Pop1 binds Cdc18 in vivo. We propose that Pop1 functions as a recognition factor for Rum1 and Cdc18, which are subsequently ubiquitinated and targeted to the 26S proteasome for degradation.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 59 条
[1]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[2]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[3]   HUMAN CYCLIN-F [J].
BAI, C ;
RICHMAN, R ;
ELLEDGE, SJ .
EMBO JOURNAL, 1994, 13 (24) :6087-6098
[4]   TATA BOX MUTATIONS IN THE SCHIZOSACCHAROMYCES-POMBE NMT-1 PROMOTER AFFECT TRANSCRIPTION EFFICIENCY BUT NOT THE TRANSCRIPTION START POINT OR THIAMINE REPRESSIBILITY [J].
BASI, G ;
SCHMID, E ;
MAUNDRELL, K .
GENE, 1993, 123 (01) :131-136
[5]   G2 cyclins are required for the degradation of G1 cyclins in yeast [J].
Blondel, M ;
Mann, C .
NATURE, 1996, 384 (6606) :279-282
[6]  
BROEK D, 1991, NATURE, V349, P388, DOI 10.1038/349388a0
[7]   Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation [J].
Clurman, BE ;
Sheaff, RJ ;
Thress, K ;
Groudine, M ;
Roberts, JM .
GENES & DEVELOPMENT, 1996, 10 (16) :1979-1990
[8]   P25(RUM1) ORDERS S-PHASE AND MITOSIS BY ACTING AS AN INHIBITOR OF THE P34(CDC2) MITOTIC KINASE [J].
CORREABORDES, J ;
NURSE, P .
CELL, 1995, 83 (06) :1001-1009
[9]  
CREANOR J, 1990, J CELL SCI, V96, P435
[10]   MAKE IT OR BREAK IT - THE ROLE OF UBIQUITIN-DEPENDENT PROTEOLYSIS IN CELLULAR-REGULATION [J].
DESHAIES, RJ .
TRENDS IN CELL BIOLOGY, 1995, 5 (11) :428-434