Heat fluxes of the Indian ocean from a global eddy-resolving model

被引:73
作者
Garternicht, U
Schott, E
机构
[1] Inslitut für Meercskunde An der University Kiel, Dusternbrooker Weg 20, Kiel
关键词
D O I
10.1029/97JC01585
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The output of the global eddy-resolving 1/4 degrees ocean model of Semtner/Chervin (run by the Naval Postgraduate School, Monterey, California) has been used to study the oceanic temperature and heat flux in the Indian Ocean. The meridional heat flux in the northern Indian Ocean is at the low end of the observed values. A vertical overturning cell in the upper 500 m is the main contributor to the annual mean meridional heat flux across 5 degrees S, whereas the horizontal gyre circulation, confined to the upper 500 m, dominates north of the equator. The change of monsoon winds is manifested in a reversal of the meridional circulation throughout the whole water column. The most notable result is a strong linear relationship of the meridional temperature flux and the zonal wind stress component north of 20 degrees S. The model's Pacific-Indian Ocean throughflow across the section at 120 degrees E accounts for -8.8 +/- 5.1 Sv (1 Sv=10(6) m(3) s(-1)). A strong interannual variability during the model run of 3 years shows a maximum range of 12 Sv in January/February and a minimum during March through June. The inflow from the Pacific into the Indian Ocean results in a total annual mean temperature flux of -0.9 PW (1 PW=10(15) W). In the model the temperature flux from the Pacific through the Indian Ocean to the south dominates in comparison with the input of solar heat from the northern Indian Ocean.
引用
收藏
页码:21147 / 21159
页数:13
相关论文
共 48 条
[1]   MODELING INTERANNUAL VARIABILITY IN THE INDIAN-OCEAN USING MOMENTUM FLUXES FROM THE OPERATIONAL WEATHER ANALYSES OF THE UNITED-KINGDOM-METEOROLOGICAL-OFFICE AND EUROPEAN CENTER FOR MEDIUM-RANGE WEATHER FORECASTS [J].
ANDERSON, DLT ;
CARRINGTON, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1993, 98 (C7) :12483-12499
[2]  
BJERKNES V, 1933, PHYSIKALISCHE HYDROD
[3]  
BONING CW, 1991, J PHYS OCEANOGR, V21, P1271, DOI 10.1175/1520-0485(1991)021<1271:STVITW>2.0.CO
[4]  
2
[5]  
BONING CW, 1994, J PHYS OCEANOGR, V24, P91, DOI 10.1175/1520-0485(1994)024<0091:ACOPHT>2.0.CO
[6]  
2
[7]  
BRYAN K, 1962, J GEOPHYS RES, V67, P3403, DOI 10.1029/JZ067i009p03403
[8]   WATER MASS MODEL OF THE WORLD OCEAN [J].
BRYAN, K ;
LEWIS, LJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS AND ATMOSPHERES, 1979, 84 (NC5) :2503-2517
[10]   HEAT-TRANSPORT BY CURRENTS ACROSS 25-DEGREES-N LATITUDE IN THE ATLANTIC-OCEAN [J].
BRYDEN, HL ;
HALL, MM .
SCIENCE, 1980, 207 (4433) :884-886