Differences between rice and wheat in ribulose-1,5-bisphosphate regeneration capacity per unit of leaf-N content

被引:31
作者
Sudo, E [1 ]
Makino, A [1 ]
Mae, T [1 ]
机构
[1] Tohoku Univ, Grad Sch Agr Sci, Dept Appl Plant Sci, Sendai, Miyagi 9818555, Japan
关键词
Oryza sativa L; Triticum aestivum L; chloroplastic fructose-1,6-bisphosphatase; cytochrome f; gas exchange (leaf); nitrogen; ribulose-1,5-bisphosphate regeneration; ribulose-1,5-bisphosphate carboxylase/oxygenase;
D O I
10.1046/j.1365-3040.2003.00955.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The photosynthetic rates under saturating CO2 conditions per unit of leaf-N content were higher in wheat than in rice. This suggested that ribulose-1,5-bisphosphate (RuBP) regeneration capacity is greater in wheat. Therefore, the biochemical factor(s) for this difference were examined between rice and wheat. Soluble protein-N, insoluble-N, and trichloroacetic acid (TCA) soluble-N contents were found not to differ between the two species. The activities of several Calvin cycle enzymes such as RuBP carboxylase, NADP-glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and chloroplastic fructose-1,6-bisphosphatase (cpFBPase) activities per unit of leaf-N content were all higher in wheat than in rice. Among them, cpFBPase activity was most highly correlated with CO2 -saturated photosynthesis. The V-max activity of sucrose-phosphate synthase (SPS) for UDP-glucose was almost the same between the two species and its K-m value was a little lower in rice. Chlorophyll content and its a /b ratio did not differ. Cytochrome (Cyt) f content was greater in wheat, whereas coupling factor 1 content was greater in rice. Cyt f content was highly correlated with CO2-saturated photosynthesis, irrespective of the two species. The results thus suggested that higher RuBP regeneration capacity in wheat leaves is most closely related to a greater Cyt f content and that another candidate is cpFBPase.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 47 条
[1]   Reduced levels of cytochrome bf complex in transgenic tobacco leads to marked photochemical reduction of the plastoquinone pool, without significant change in acclimation to irradiance [J].
Anderson, JM ;
Price, GD ;
Chow, WS ;
Hope, AB ;
Badger, MR .
PHOTOSYNTHESIS RESEARCH, 1997, 53 (2-3) :215-227
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]  
Bendall D.S., 1971, METHOD ENZYMOL, V23, P327, DOI DOI 10.1016/S0076-6879(71)23109-8
[4]  
Dalling M. J., 1987, Plant senescence: its biochemistry and physiology. Proceedings of the Tenth Annual Symposium in Plant Physiology, 8-10 January, 1987, University of California, Riverside, California, USA., P54
[5]   PHOTOSYNTHESIS AND NITROGEN RELATIONSHIPS IN LEAVES OF C-3 PLANTS [J].
EVANS, JR .
OECOLOGIA, 1989, 78 (01) :9-19
[6]   THE RELATIONSHIP BETWEEN ELECTRON-TRANSPORT COMPONENTS AND PHOTOSYNTHETIC CAPACITY IN PEA LEAVES GROWN AT DIFFERENT IRRADIANCES [J].
EVANS, JR .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1987, 14 (02) :157-170
[7]  
Evans JR., 1989, PHOTOSYNTHESIS, P183
[8]  
Farquhar G. D., 1982, Encyclopedia of plant physiology. New series. Volume 12B. Physiological plant ecology. II. Water relations and carbon assimilation. [Lange, O.L.
[9]  
Nobel, P.S.
[10]  
Osmond, C.B.