Feature selection via discretization

被引:200
作者
Liu, H
Setiono, R
机构
[1] Department of Information Systems and Computer Science, National University of Singapore, Kent Ridge
关键词
discretization; feature selection; pattern classification;
D O I
10.1109/69.617056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discretization can turn numeric attributes into discrete ones. Feature selection can eliminate some irrelevant and/or redundant attributes. Chi2 is a simple and general algorithm that uses the chi 2 statistic to discretize numeric attributes repeatedly until some inconsistencies are found in the data. It achieves feature selection via discretization. It can handle mixed attributes, work with multiclass data, and remove irrelevant and redundant attributes.
引用
收藏
页码:642 / 645
页数:4
相关论文
共 12 条
  • [1] LEARNING BOOLEAN CONCEPTS IN THE PRESENCE OF MANY IRRELEVANT FEATURES
    ALMUALLIM, H
    DIETTERICH, TG
    [J]. ARTIFICIAL INTELLIGENCE, 1994, 69 (1-2) : 279 - 305
  • [2] [Anonymous], 1992, The Tenth National Conference on Artificial Intelligence
  • [3] [Anonymous], P 10 NAT C ART INT S
  • [4] Barnes J.A., 1986, STAT TABLES SCI ENG, V3rd
  • [5] CATLETT J, 1991, EUROPEAN WORKING SES
  • [6] Huan Liu, 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P319
  • [7] Kira K., 1992, P 10 NAT C ART INT
  • [8] LIU H, 1993, P 1 AUSTR NZ C INT I
  • [9] QUINLAN JR, 1993, C4 5 PROGR MACH LEAR
  • [10] Ragavan H., 1993, P 10 INT C MACH LEAR, P252