A Physically Based Screen for Precipitation Over Complex Surfaces Using Passive Microwave Observations

被引:17
作者
Bytheway, Janice L. [1 ]
Kummerow, Christian D. [1 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 01期
基金
美国国家航空航天局;
关键词
Emission; microwave measurements; remote sensing; rough surfaces; terrestrial atmosphere; DIELECTRIC-CONSTANT; RAINFALL ESTIMATION; SEA-WATER; RETRIEVAL; EMISSIVITY; MODEL; TEMPERATURE; MISSION; AQUA;
D O I
10.1109/TGRS.2009.2027434
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Physically based passive microwave precipitation retrievals are difficult to develop over land because high nonuniform land emissivity values are difficult to distinguish from those of clouds. This paper uses an empirical approach to determine the covariance of emissivity at different microwave window channels and relies on this covariance to estimate the portion of the observed brightness temperatures that may be attributable to rainfall. One year (2006) of global cloud-free surface emissivity values were retrieved using data sets from multiple instruments on NASA's Aqua satellite. Correlations between the emissivities at different channels were developed for use in an empirical model within an optimal estimation retrieval. The optimal estimation retrieves surface temperature, total column water vapor, cloud water, and the emissivity at the 10.7-GHz horizontally polarized channel. From this retrieval and the covariance of emissivities, the 89.0-GHz brightness temperature at both polarizations can be estimated. Significant differences between the observed and retrieved high-resolution brightness temperatures are used to screen for precipitation, and results are compared to ground-based radar data for several study regions representing a variety of land surface types in the U. S. The Heidke Skill Score is used to determine the robustness of this methodology and, in all cases, demonstrates at least some increase in skill relative to random chance.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 41 条
[1]   Overview of overland satellite rainfall estimation for hydro-meteorological applications [J].
Anagnostou, EN .
SURVEYS IN GEOPHYSICS, 2004, 25 (5-6) :511-537
[2]  
[Anonymous], 1986, THEORY APPL
[3]   AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems [J].
Aumann, HH ;
Chahine, MT ;
Gautier, C ;
Goldberg, MD ;
Kalnay, E ;
McMillin, LM ;
Revercomb, H ;
Rosenkranz, PW ;
Smith, WL ;
Staelin, DH ;
Strow, LL ;
Susskind, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :253-264
[4]  
Conner MD, 1998, J APPL METEOROL, V37, P679, DOI 10.1175/1520-0450(1998)037<0679:VAIOSI>2.0.CO
[5]  
2
[6]  
Drusch M, 2001, J HYDROMETEOROL, V2, P181, DOI 10.1175/1525-7541(2001)002<0181:VAACFT>2.0.CO
[7]  
2
[8]  
EBERT EE, 1995, 55 BUR MET RES CTR
[9]   Toward a fully parametric retrieval of the nonraining parameters over the global oceans [J].
Elsaesser, Gregory S. ;
Kummerow, Christian D. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (06) :1599-1618
[10]  
FISHBEIN E, 2005, AIRS AMSU HSB VERSIO