What determines the spreading of a wave packet?

被引:139
作者
Ketzmerick, R
Kruse, K
Kraut, S
Geisel, T
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
[2] UNIV GOTTINGEN,INST NICHTLINEARE DYNAM,D-37073 GOTTINGEN,GERMANY
[3] UNIV FRANKFURT,INST THEORET PHYS,D-60054 FRANKFURT,GERMANY
[4] UNIV FRANKFURT,SFB NICHTLINEARE DYNAM,D-60054 FRANKFURT,GERMANY
关键词
D O I
10.1103/PhysRevLett.79.1959
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multifractal dimensions D-2(mu) and D-2(psi) of the energy spectrum and eigenfunctions, respectively, are shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where the shape of the wave packet is preserved, the kth moment increases as t(k beta) with beta = D-2(mu) / D-2(psi), while, in general, t(k beta) is an optimal lower bound. Furthermore, we show that in d dimensions asymptotically in time the center of any wave packet decreases spatially as a power law with exponent D-2(psi) - d, and present numerical support for these results.
引用
收藏
页码:1959 / 1963
页数:5
相关论文
共 39 条
[1]  
[Anonymous], DIFFERENTIAL EQUATIO
[2]   PHASE-DIAGRAM IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
BORGONOVI, F ;
GUARNERI, I ;
REBUZZINI, L ;
CASATI, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (23) :3302-3305
[3]   FRACTAL SPECTRUM AND ANOMALOUS DIFFUSION IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (26) :3826-3829
[4]  
AZBEL MY, 1964, SOV PHYS JETP-USSR, V19, P634
[5]  
BARBAROUX JM, CPT96P3303
[6]  
Brandes T, 1996, ANN PHYS-LEIPZIG, V5, P633
[7]   SCALING, DIFFUSION, AND THE INTEGER QUANTIZED HALL-EFFECT [J].
CHALKER, JT ;
DANIELL, GJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (05) :593-596
[8]   WHAT IS LOCALIZATION [J].
DELRIO, R ;
JITOMIRSKAYA, S ;
LAST, Y ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :117-119
[9]   MULTIFRACTAL QUANTUM EVOLUTION AT A MOBILITY EDGE [J].
EVANGELOU, SN ;
KATSANOS, DE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :L1243-L1250
[10]   METAMORPHOSIS OF A CANTOR SPECTRUM DUE TO CLASSICAL CHAOS [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 67 (26) :3635-3638