Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo

被引:134
作者
Chi, L.
Ke, Y.
Luo, C.
Gozal, D.
Liu, R.
机构
[1] Univ N Dakota, Sch Med, Dept Anat & Cell Biol, Grand Forks, ND 58202 USA
[2] Univ Louisville, Kosair Children Hosp, Inst Res, Dept Pediat, Louisville, KY 40202 USA
关键词
motor neuron degeneration; ALS; oxidative stress; glutathione; reactive oxygen species; apoptosis;
D O I
10.1016/j.neuroscience.2006.09.064
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The mechanism of selective and age-dependent motor neuron degeneration in human amyotrophic lateral sclerosis (ALS) has not been defined and the role of glutathione (GSH) in association with motor neuron death remains largely unknown. A motor neuron-like cell culture system and a transgenic mouse model were used to study the effect of cellular GSH alteration on motor neuron cell death. Exposure of NSC34 motor neuron-like cells to ethacrynic acid (EA) or L-buthionine sulfoximine (BSO) dramatically reduced the cellular GSH levels, and was accompanied by increased production of reactive oxygen species (ROS) measured by the dichlorofluorescin (DCF) fluorescent oxidation assay. In addition, GSH depletion enhanced oxidative stress markers, AP-1 transcriptional activation, c-Jun, c-Fos and heme oxygenase-1 (HO-1) expression in NSC34 cells analyzed by a luciferase reporter, Western blotting and quantitative PCR assays respectively. Furthermore, depletion of GSH decreased mitochondrial function, facilitated apoptosis inducing factor (AIF) translocation, cytochrome c release, and caspase 3 activation, and consequently led to motor neuron-like cell apoptosis. In an ALS-like transgenic mouse model overexpressing mutant G93A-Cu, Zn-superoxide dismutase (SOD1) gene, we showed that the reduction of GSH in the spinal cord and motor neuron cells is correlated with AIF translocation, caspase 3 activation, and motor neuron degeneration during ALS-like disease onset and progression. Taken together, the in vitro and in vivo data presented in the current report demonstrated that decreased GSH promotes multiple apoptotic pathways contributing, at least partially, to motor neuron degeneration in ALS. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:991 / 1003
页数:13
相关论文
共 55 条
[1]   ALZHEIMERS AND PARKINSONS-DISEASE - BRAIN LEVELS OF GLUTATHIONE, GLUTATHIONE DISULFIDE, AND VITAMIN-E [J].
ADAMS, JD ;
KLAIDMAN, LK ;
ODUNZE, IN ;
SHEN, HC ;
MILLER, CA .
MOLECULAR AND CHEMICAL NEUROPATHOLOGY, 1991, 14 (03) :213-226
[2]   Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death [J].
Bains, JS ;
Shaw, CA .
BRAIN RESEARCH REVIEWS, 1997, 25 (03) :335-358
[3]   Glutathione, iron and Parkinson's disease [J].
Bharath, S ;
Hsu, M ;
Kaur, D ;
Rajagopalan, S ;
Andersen, JK .
BIOCHEMICAL PHARMACOLOGY, 2002, 64 (5-6) :1037-1048
[4]   Adaptive resistance to nitric oxide in motor neurons [J].
Bishop, A ;
Marquis, JC ;
Cashman, NR ;
Demple, B .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 26 (7-8) :978-986
[5]  
Bogdanov MB, 1998, J NEUROCHEM, V71, P1321
[6]   Apoptosis-inducing factor (AIF):: caspase-independent after all [J].
Candé, C ;
Vahsen, N ;
Garrido, C ;
Kroemer, G .
CELL DEATH AND DIFFERENTIATION, 2004, 11 (06) :591-595
[7]   NEUROBLASTOMA X SPINAL-CORD (NSC) HYBRID CELL-LINES RESEMBLE DEVELOPING MOTOR NEURONS [J].
CASHMAN, NR ;
DURHAM, HD ;
BLUSZTAJAN, JK ;
ODA, K ;
TABIRA, T ;
SHAW, IT ;
DAHROUGE, S ;
ANTEL, JP .
DEVELOPMENTAL DYNAMICS, 1992, 194 (03) :209-221
[8]   Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer's disease [J].
Cecchi, C ;
Latorraca, S ;
Sorbi, S ;
Iantomasi, T ;
Favilli, F ;
Vincenzini, MT ;
Liguri, G .
NEUROSCIENCE LETTERS, 1999, 275 (02) :152-154
[9]   From Charcot to Lou Gehrig: Deciphering selective motor neuron death in ALS [J].
Cleveland, DW ;
Rothstein, JD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (11) :806-819
[10]   Manganese porphyrin given at symptom onset markedly extends survival of ALS mice [J].
Crow, JP ;
Calingasan, NY ;
Chen, JY ;
Hill, JL ;
Beal, MF .
ANNALS OF NEUROLOGY, 2005, 58 (02) :258-265