Nonpotential effects in nonlinear dynamics of Marangoni convection

被引:8
作者
Golovin, AA [1 ]
Nepomnyashchy, AA
Pismen, LM
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[2] Technion Israel Inst Technol, Minerva Ctr Nonlinear Phys Complex Syst, Dept Math, Haifa, Israel
[3] Technion Israel Inst Technol, Minerva Ctr Nonlinear Phys Complex Syst, Dept Chem Engn, Haifa, Israel
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2002年 / 12卷 / 11期
基金
以色列科学基金会;
关键词
Marangoni convection; nonpotential effects; patterns; free surface; defects;
D O I
10.1142/S021812740200600X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonpotential effects in nonlinear evolution of Marangoni convection patterns are investigated analytically and numerically. Three manifestations of nonpotential effects are considered: (i) spatial modulations of hexagonal patterns; (ii) interaction between a short-scale hexagonal pattern and a long-scale slow deformational (Goldstone) mode; (iii) generation of the mean flow by the free-surface deformation in a large-scale Marangoni convection with poorly conducting boundaries. Nonpotential effects are shown to cause various secondary instabilities leading to skewed hexagonal structures, coexisting u- and d-hexagons, oscillating hexagonal patterns, spatially irregular cellular patterns, etc.
引用
收藏
页码:2487 / 2500
页数:14
相关论文
共 45 条
[1]   Observation of coexisting upflow and downflow hexagons in Boussinesq Rayleigh-Benard convection [J].
Assenheimer, M ;
Steinberg, V .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :756-759
[2]   Control of Marangoni-Benard convection [J].
Bau, HH .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (07) :1327-1341
[3]   PHASE AND AMPLITUDE INSTABILITIES FOR BENARD-MARANGONI CONVECTION IN FLUID LAYERS WITH LARGE ASPECT RATIO [J].
BESTEHORN, M .
PHYSICAL REVIEW E, 1993, 48 (05) :3622-3634
[4]   Benard-Marangoni convection of a binary mixture as an example of an oscillatory bifurcation under strong symmetry-breaking effects [J].
Bestehorn, M ;
Colinet, P .
PHYSICA D, 2000, 145 (1-2) :84-109
[5]   Benard-Marangoni convection at low Prandtl number [J].
Boeck, T ;
Thess, A .
JOURNAL OF FLUID MECHANICS, 1999, 399 :251-275
[6]  
BOECK T, 1996, SCI COMPUTING CHEM E, P352
[7]   Benard-Marangoni convection: planforms and related theoretical predictions [J].
Bragard, J ;
Velarde, MG .
JOURNAL OF FLUID MECHANICS, 1998, 368 :165-194
[8]  
BRAND HR, 1989, PROG THEOR PHYS SUPP, P442, DOI 10.1143/PTPS.99.442
[9]   ORDER-PARAMETER AND AMPLITUDE EQUATIONS FOR THE RAYLEIGH-BENARD CONVECTION [J].
DECKER, W ;
PESCH, W .
JOURNAL DE PHYSIQUE II, 1994, 4 (03) :419-438
[10]   Phase instabilities in hexagonal patterns [J].
Echebarria, B ;
Perez-Garcia, C .
EUROPHYSICS LETTERS, 1998, 43 (01) :35-40