Gaussian-4 theory

被引:1831
作者
Curtiss, Larry A. [1 ]
Redfern, Paul C.
Raghavachari, Krishnan
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[4] Indiana Univ, Dept Chem, Bloomington, IN 47401 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2436888
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Gaussian-4 theory (G4 theory) for the calculation of energies of compounds containing first- (Li-F), second- (Na-Cl), and third-row main group (K, Ca, and Ga-Kr) atoms is presented. This theoretical procedure is the fourth in the Gaussian-n series of quantum chemical methods based on a sequence of single point energy calculations. The G4 theory modifies the Gaussian-3 (G3) theory in five ways. First, an extrapolation procedure is used to obtain the Hartree-Fock limit for inclusion in the total energy calculation. Second, the d-polarization sets are increased to 3d on the first-row atoms and to 4d on the second-row atoms, with reoptimization of the exponents for the latter. Third, the QCISD(T) method is replaced by the CCSD(T) method for the highest level of correlation treatment. Fourth, optimized geometries and zero-point energies are obtained with the B3LYP density functional. Fifth, two new higher level corrections are added to account for deficiencies in the energy calculations. The new method is assessed on the 454 experimental energies in the G3/05 test set [L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 123, 124107 (2005)], and the average absolute deviation from experiment shows significant improvement from 1.13 kcal/mol (G3 theory) to 0.83 kcal/mol (G4 theory). The largest improvement is found for 79 nonhydrogen systems (2.10 kcal/mol for G3 versus 1.13 kcal/mol for G4). The contributions of the new features to this improvement are analyzed and the performance on different types of energies is discussed. (c) 2007 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Gaussian-3 theory using density functional geometries and zero-point energies [J].
Baboul, AG ;
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (16) :7650-7657
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca [J].
Blaudeau, JP ;
McGrath, MP ;
Curtiss, LA ;
Radom, L .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (13) :5016-5021
[4]  
BLAUDEAU JP, COMMUNICATION
[5]   W3 theory:: Robust computational thermochemistry in the kJ/mol accuracy range [J].
Boese, AD ;
Oren, M ;
Atasoylu, O ;
Martin, JML ;
Kállay, M ;
Gauss, J .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (09) :4129-4141
[6]   Gaussian-3 theory using coupled cluster energies [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Baboul, AG ;
Pople, JA .
CHEMICAL PHYSICS LETTERS, 1999, 314 (1-2) :101-107
[7]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776
[8]   Assessment of Gaussian-3 and density functional theories for a larger experimental test set [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17) :7374-7383
[9]   Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (03) :1063-1079
[10]   Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies [J].
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (12)