Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis

被引:118
作者
Iyer, M [1 ]
Mishra, R [1 ]
Han, Y [1 ]
Hopfinger, AJ [1 ]
机构
[1] Univ Illinois, Coll Pharm, Lab Mol Modeling & Design MC 781, Chicago, IL 60612 USA
关键词
blood-brain barrier partitioning; QSAR; solute-membrane binding; conformational flexibility;
D O I
10.1023/A:1020792909928
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Purpose. Membrane-interaction quantitative structure-activity relationship (QSAR) analysis (MI-QSAR) has been used to develop predictive models of blood-brain barrier partitioning of organic compounds by, in part, simulating the interaction of an organic compound with the phospholipid-rich regions of cellular membranes. Method. A training set of 56 structurally diverse compounds whose blood-brain barrier partition coefficients were measured was used to construct MI-QSAR models. Molecular dynamics simulations were used to determine the explicit interaction of each test compound (solute) with a model DMPC monolayer membrane model. An additional set of intramolecular solute descriptors were computed and considered in the trial pool of descriptors for building MI-QSAR models. The QSAR models were optimized using multidimensional linear regression fitting and a genetic algorithm. A test set of seven compounds was evaluated using the MI-QSAR models as part of a validation process. Results. Significant MI-QSAR models (R-2 = 0.845, Q(2) = 0.795) of the blood-brain partitioning process were constructed. Blood-brain barrier partitioning is found to depend upon the polar surface area, the octanol/water partition coefficient, and the conformational flexibility of the compounds as well as the strength of their "binding" to the model biologic membrane. The blood-brain barrier partitioning measures of the test set compounds were predicted with the same accuracy as the compounds of the training set. Conclusion. The MI-QSAR models indicate that the blood-brain barrier partitioning process can be reliably described for structurally diverse molecules provided interactions of the molecule with the phospholipids-rich regions of cellular membranes are explicitly considered.
引用
收藏
页码:1611 / 1621
页数:11
相关论文
共 38 条
[1]  
Abraham M H, 1995, Drug Des Discov, V13, P123
[2]   On the partition of ampholytes: Application to blood-brain distribution [J].
Abraham, MH ;
TakacsNovak, K ;
Mitchell, RC .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1997, 86 (03) :310-315
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   PHYSICAL-PROPERTIES OF THE FLUID LIPID-BILAYER COMPONENT OF CELL-MEMBRANES - A PERSPECTIVE [J].
BLOOM, M ;
EVANS, E ;
MOURITSEN, OG .
QUARTERLY REVIEWS OF BIOPHYSICS, 1991, 24 (03) :293-397
[6]   Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration [J].
Clark, DE .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1999, 88 (08) :815-821
[7]   Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption [J].
Clark, DE .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1999, 88 (08) :807-814
[8]   Predicting blood-brain barrier permeation from three-dimensional molecular structure [J].
Crivori, P ;
Cruciani, G ;
Carrupt, PA ;
Testa, B .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (11) :2204-2216
[9]  
*DAYL CHEM INF INC, 1998, CLOGP DAYL CHEM INF
[10]  
DOHERTY DC, 1994, MOLSIM VERSION 3 0 U