Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans

被引:90
作者
Cobessi, D
Tête-Favier, F
Marchal, S
Branlant, G
Aubry, A
机构
[1] Fac Sci, Lab Cristallograph & Modelisat Mat Mineraux & Biol, Grp Biocristallographie, F-54506 Vandoeuvre Nancy, France
[2] UHP, CNRS,Lab Maturat ARNs & Enzymol Mol, UMR 7567, Fac Sci, F-54506 Vandoeuvre Nancy, France
关键词
ALDH X-ray structure; oxyanion hole; NADP flexibility; ternary complex; isotope effect;
D O I
10.1006/jmbi.2000.3824
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans (abbreviated Sm-ALDH) belongs to the aldehyde dehydrogenase (ALDH) family. Tts catalytic mechanism proceeds via two steps, acylation and deacylation. Its high catalytic efficiency at neutral pH implies prerequisites relative to the chemical mechanism. First, the catalytic Cys284 should be accessible and in a thiolate form at physiological pH to attack efficiently the aldehydic group of the glyceraldehyde-3-phosphate (G3P). Second, the hydride transfer from the hemithioacetal intermediate toward the nicotinamide ring of NADP should be efficient. Third, the nucleophilic character of the water molecule involved in the deacylation should be strongly increased. Moreover, the different complexes formed during the catalytic process should be stabilised. The crystal structures presented here (an apoenzyme named Apo2 with two sulphate ions bound to the catalytic site, the C2845 mutant holoenzyme and the ternary complex composed of the C2845 holoenzyme and G3P) together with biochemical results and previously published apo and hole crystal structures (named Apo1 and Holo1, respectively) contribute to the understanding of the ALDH catalytic mechanism. Comparison of Apo1 and Holo1 crystal structures shows a Cys284 side-chain rotation of 110 degrees, upon cofactor binding, which is probably responsible for its pK(a) decrease. In the Apo2 structure, an oxygen atom of a sulphate anion interacts by hydrogen bonds with the NH2 group of a conserved asparagine residue (Asn154 in Sm-ALDH) and the Cys284 NH group. In the ternary complex, the oxygen atom of the aldehydic carbonyl group of the substrate interacts with the Ser284 NH group and the Asn154 NH2 group. A substrate isotope effect on acylation is observed for both the wild-type and the N154A and N154T mutants. The rate of the acylation step strongly decreases for the mutants and becomes limiting. All these results suggest the involvement of Asn154 in an oxyanion hole in order to stabilise the tetrahedral intermediate and likely the other intermediates of the reaction. In the ternary complex, the cofactor conformation is shifted in comparison with its conformation in the C284S holoenzyme structure, likely resulting from its peculiar binding mode to the Rossmann fold (i.e. non-perpendicular to the plane of the beta-sheet). This change is likely favoured by a characteristic loop of the Rossmann fold, longer in ALDHs than in other dehydrogenases, whose orientation could be constrained by a conserved proline residue. In the ternary and C284S holenzyme structures, as well as in the Apo2 structure, the Glu250 side-chain is situated less than 4 Angstrom from Cys284 or Ser284 instead of 7 Angstrom in the crystal structure of the wild-type holoenzyme. It is now positioned in a hydrophobic environment. This supports the pK(a) assignment of 7.6 to Glu250 as recently proposed from enzymatic studies. (C) 2000 Academic Press.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 26 条
[1]   Protein motifs .9. The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins [J].
Bellamacina, CR .
FASEB JOURNAL, 1996, 10 (11) :1257-1269
[2]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[3]   SEQUENCE, EXPRESSION, AND FUNCTION OF THE GENE FOR THE NONPHOSPHORYLATING, NADP-DEPENDENT GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE OF STREPTOCOCCUS-MUTANS [J].
BOYD, DA ;
CVITKOVITCH, DG ;
HAMILTON, IR .
JOURNAL OF BACTERIOLOGY, 1995, 177 (10) :2622-2627
[4]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[5]  
BRUNGER AT, 1990, X PLOR MANUAL
[6]  
Carugo O, 1997, PROTEINS, V28, P10, DOI 10.1002/(SICI)1097-0134(199705)28:1<10::AID-PROT2>3.0.CO
[7]  
2-N
[8]   Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans [J].
Cobessi, D ;
Tête-Favier, F ;
Marchal, S ;
Azza, S ;
Branlant, G ;
Aubry, A .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 290 (01) :161-173
[9]   THE NICOTINAMIDE SUBSITE OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE STUDIED BY SITE-DIRECTED MUTAGENESIS [J].
CORBIER, C ;
MOUGIN, A ;
MELY, Y ;
ADOLPH, HW ;
ZEPPEZAUER, M ;
GERARD, D ;
WONACOTT, A ;
BRANLANT, G .
BIOCHIMIE, 1990, 72 (08) :545-554
[10]   Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution [J].
Johansson, K ;
El-Ahmad, M ;
Ramaswamy, S ;
Hjelmqvist, L ;
Jörnvall, H ;
Eklund, H .
PROTEIN SCIENCE, 1998, 7 (10) :2106-2117