Arabidopsis ESK1 encodes a novel regulator of freezing tolerance

被引:134
作者
Xin, Zhanguo
Mandaokar, Ajin
Chen, Junping
Last, Robert L.
Browse, John
机构
[1] USDA ARS, Plant Stress & Germplasm Dev Unit, Lubbock, TX 79415 USA
[2] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
[3] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
关键词
freezing tolerance; cold acclimation; esk1; mutant; microarray;
D O I
10.1111/j.1365-313X.2006.02994.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expression between esk1-1 and wild type indicate that mutations at esk1 result in altered expression of transcription factors and signaling components and of a set of stress-responsive genes. Interestingly, the list of 312 genes regulated by ESK1 shows greater overlap with sets of genes regulated by salt, osmotic and abscisic acid treatments than with genes regulated by cold acclimation or by the transcription factors CBF3 and ICE1, which have been shown to control genetic pathways for freezing tolerance. Map-based cloning identified the esk1 locus as At3g55990. The wild-type ESK1 gene encodes a 57-kDa protein and is a member of a large gene family of DUF231 domain proteins whose members encode a total of 45 proteins of unknown function. Our results indicate that ESK1 is a novel negative regulator of cold acclimation. Mutations in the ESK1 gene provide strong freezing tolerance through genetic regulation that is apparently very different from previously described genetic mechanisms of cold acclimation.
引用
收藏
页码:786 / 799
页数:14
相关论文
共 56 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   ACCELERATION OF NUCLEIC-ACID HYBRIDIZATION RATE BY POLYETHYLENE-GLYCOL [J].
AMASINO, RM .
ANALYTICAL BIOCHEMISTRY, 1986, 152 (02) :304-307
[3]   Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana [J].
Arondel, V ;
Vergnolle, C ;
Cantrel, C ;
Kader, JC .
PLANT SCIENCE, 2000, 157 (01) :1-12
[4]   Cold induction of EARLI1, a putative Arabidopsis lipid transfer protein, is light and calcium dependent [J].
Bubier, J ;
Schläppi, M .
PLANT CELL AND ENVIRONMENT, 2004, 27 (07) :929-936
[5]   CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J].
Cheong, YH ;
Kim, KN ;
Pandey, GK ;
Gupta, R ;
Grant, JJ ;
Luan, S .
PLANT CELL, 2003, 15 (08) :1833-1845
[6]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[7]   PROLINE BIOSYNTHESIS AND OSMOREGULATION IN PLANTS [J].
DELAUNEY, AJ ;
VERMA, DPS .
PLANT JOURNAL, 1993, 4 (02) :215-223
[8]   The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1 [J].
Dong, Chun-Hai ;
Agarwal, Manu ;
Zhang, Yiyue ;
Xie, Qi ;
Zhu, Jian-Kang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (21) :8281-8286
[9]   Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J].
Fowler, S ;
Thomashow, MF .
PLANT CELL, 2002, 14 (08) :1675-1690
[10]   Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities [J].
Gilmour, SJ ;
Fowler, SG ;
Thomashow, MF .
PLANT MOLECULAR BIOLOGY, 2004, 54 (05) :767-781