Multiplicative latent factor models for description and prediction of social networks

被引:96
作者
Hoff, Peter D. [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Washington, Ctr Stat & Social Sci, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Eigenvalue decomposition; Exchangeability; Prediction; Singular value decomposition; Social network; Visualization; ROUND ROBIN ANALYSIS; VARIANCE;
D O I
10.1007/s10588-008-9040-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss a statistical model of social network data derived from matrix representations and symmetry considerations. The model can include known predictor information in the form of a regression term, and can represent additional structure via sender-specific and receiver-specific latent factors. This approach allows for the graphical description of a social network via the latent factors of the nodes, and provides a framework for the prediction of missing links in network data.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 14 条