Polyethylenimine derivatives as potent nonviral vectors for gene transfer

被引:18
作者
Merlin, JL [1 ]
N'Doye, A [1 ]
Bouriez, T [1 ]
Dolivet, G [1 ]
机构
[1] Ctr Alexis Vautrin, F-54511 Vandoeuvre Les Nancy, France
关键词
D O I
10.1358/dnp.2002.15.7.840080
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The delivery of a functional gene into a tissue can allow the correction of gene defaults or mutations such as those observed in severe hereditary pathologies or in cancer tissues and could lead to gene therapy. To achieve gene transfer, viral vectors are mainly used because of their intrinsic ability to enter the cells and promote expression of the transgene. However, many factors can limit the use of viral vectors, including a heavy laboratory infrastructure, and, in the case of iterative administration, the induction of immune response against viral proteins. Alternative gene transfer technologies based on nonviral vectors have been proposed. Polyethylenimine (PEI) derivatives are polycationic molecules that are able to form stable complexes with plasmidic DNA. PEI/DNA complexes attach to the cell surface, migrate into clumps that enter the cell by endocytosis and are deagregated in an acidic lysosomal compartment and/or enter the nucleus. PEI derivatives can be proposed as linear (22 kDa) or reticulated (25 kDa) molecules that prove efficient for gene transfer in vitro and in vivo. Besides extensive applications of unsubstituted PEI, glycosylated-PEI derivatives were proposed and reported to enhance gene transfer efficiency through decreased size and aggregation of PEI/DNA complexes. Galactosylated-PEI derivatives have been reported to enhance interactions with cell membranes through carbohydrate-binding protein recognition and specifically target PEI/DNA complexes toward biological systems that express galectins. More recently, glucosylated PEI derivatives have been shown to yield higher and longer-lasting transgene expression than unsubstituted-PEI in human head and neck carcinoma tumor cells. In the present paper, a review of in vitro and in vivo properties of PEI-mediated gene transfer experiments is presented. (C) 2002 Prous Science. All rights reserved.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 46 条
[1]   A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine [J].
Abdallah, B ;
Hassan, A ;
Benoist, C ;
Goula, D ;
Behr, JP ;
Demeneix, BA .
HUMAN GENE THERAPY, 1996, 7 (16) :1947-1954
[2]   Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity [J].
Aoki, K ;
Furuhata, S ;
Hatanaka, K ;
Maeda, M ;
Remy, JS ;
Behr, JP ;
Terada, M ;
Yoshida, T .
GENE THERAPY, 2001, 8 (07) :508-514
[3]  
BANDYOPADHYAY P, 1999, J BIOL CHEM, V10, P395
[4]   Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine [J].
Benns, JM ;
Mahato, RI ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 2002, 79 (1-3) :255-269
[5]   Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes [J].
Bettinger, T ;
Remy, JS ;
Erbacher, P .
BIOCONJUGATE CHEMISTRY, 1999, 10 (04) :558-561
[6]  
BLESSING T, 2001, BIOCONJUG CHEM, V20, P159
[7]   Nonviral gene delivery to the rat kidney with polyethylenimine [J].
Boletta, A ;
Benigni, A ;
Lutz, J ;
Remuzzi, G ;
Soria, MR ;
Monaco, L .
HUMAN GENE THERAPY, 1997, 8 (10) :1243-1251
[8]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[9]  
Boussif O, 1996, GENE THER, V3, P1074
[10]   In vivo delivery to tumors of DNA complexed with linear polyethylenimine [J].
Coll, JL ;
Chollet, P ;
Brambilla, E ;
Desplanques, D ;
Behr, JP ;
Favrot, M .
HUMAN GENE THERAPY, 1999, 10 (10) :1659-1666