Growth-limiting Intracellular Metabolites in Yeast Growing under Diverse Nutrient Limitations

被引:187
作者
Boer, Viktor M. [1 ,2 ]
Crutchfield, Christopher A. [1 ,3 ]
Bradley, Patrick H. [1 ,2 ]
Botstein, David [1 ,2 ]
Rabinowitz, Joshua D. [1 ,3 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SACCHAROMYCES-CEREVISIAE; CHEMOSTAT CULTURES; GENE-EXPRESSION; CELL-CYCLE; QUANTITATIVE-ANALYSIS; ESCHERICHIA-COLI; BAKERS-YEAST; NITROGEN; GLUCOSE; PROTEIN;
D O I
10.1091/mbc.E09-07-0597
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Microbes tailor their growth rate to nutrient availability. Here, we measured, using liquid chromatography-mass spectrometry, >100 intracellular metabolites in steady-state cultures of Saccharomyces cerevisiae growing at five different rates and in each of five different limiting nutrients. In contrast to gene transcripts, where similar to 25% correlated with growth rate irrespective of the nature of the limiting nutrient, metabolite concentrations were highly sensitive to the limiting nutrient's identity. Nitrogen (ammonium) and carbon (glucose) limitation were characterized by low intracellular amino acid and high nucleotide levels, whereas phosphorus (phosphate) limitation resulted in the converse. Low adenylate energy charge was found selectively in phosphorus limitation, suggesting the energy charge may actually measure phosphorus availability. Particularly strong concentration responses occurred in metabolites closely linked to the limiting nutrient, e. g., glutamine in nitrogen limitation, ATP in phosphorus limitation, and pyruvate in carbon limitation. A simple but physically realistic model involving the availability of these metabolites was adequate to account for cellular growth rate. The complete data can be accessed at the interactive website http://growthrate.princeton.edu/metabolome.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 85 条
[1]   Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity [J].
Abbott, Derek A. ;
van den Brink, Joost ;
Minneboo, Inge M. K. ;
Pronk, Jack T. ;
van Maris, Antonius J. A. .
FEMS YEAST RESEARCH, 2009, 9 (03) :349-357
[2]   Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae [J].
Auesukaree, C ;
Tochio, H ;
Shirakawa, M ;
Kaneko, Y ;
Harashima, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (26) :25127-25133
[3]  
AVIGAD G, 1981, BIOCH BIOPHYSICAL RE, V102, P7
[4]   Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry [J].
Bajad, Sunil U. ;
Lu, Wenyun ;
Kimball, Elizabeth H. ;
Yuan, Jie ;
Peterson, Celeste ;
Rabinowitz, Joshua D. .
JOURNAL OF CHROMATOGRAPHY A, 2006, 1125 (01) :76-88
[5]   INVESTIGATION OF THE SIGNIFICANCE OF A CARBON AND REDOX BALANCE TO THE MEASUREMENT OF GASEOUS METABOLISM OF SACCHAROMYCES-CEREVISIAE [J].
BARFORD, JP ;
HALL, RJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1979, 21 (04) :609-626
[6]   ENZYME PATTERN AND AEROBIC GROWTH OF SACCHAROMYCES CEREVISIAE UNDER VARIOUS DEGREES OF GLUCOSE LIMITATION [J].
BECK, C ;
VONMEYEN.HK .
JOURNAL OF BACTERIOLOGY, 1968, 96 (02) :479-+
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur [J].
Boer, VM ;
de Winde, JH ;
Pronk, JT ;
Piper, MDW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3265-3274
[9]   Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures [J].
Boer, VM ;
Daran, JM ;
Almering, MJH ;
de Winde, JH ;
Pronk, JT .
FEMS YEAST RESEARCH, 2005, 5 (10) :885-897
[10]   The molecular genetics of hexose transport in yeasts [J].
Boles, E ;
Hollenberg, CP .
FEMS MICROBIOLOGY REVIEWS, 1997, 21 (01) :85-111