Multifractal detrended fluctuation analysis of nonstationary time series

被引:2825
作者
Kantelhardt, JW
Zschiegner, SA
Koscielny-Bunde, E
Havlin, S
Bunde, A
Stanley, HE
机构
[1] Univ Giessen, Inst Theoret Phys 3, D-35392 Giessen, Germany
[2] Boston Univ, Ctr Polymer Studies, Dept Phys, Boston, MA 02215 USA
[3] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[5] Bar Ilan Univ, Gonda Goldschmied Ctr Med Diagnosis, IL-52900 Ramat Gan, Israel
基金
美国国家卫生研究院;
关键词
multifractal formalism; scaling; nonstationarities; time series analysis; long-range correlations; broad distributions; detrended fluctuation analysis;
D O I
10.1016/S0378-4371(02)01383-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifiractal DFA method to the standard partition function-based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series with those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima method, and show that the results are equivalent. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 114
页数:28
相关论文
共 48 条
[1]   Fractal long-range correlations in behavioural sequences of wild chimpanzees: A non-invasive analytical tool for the evaluation of health [J].
Alados, CL ;
Huffman, MA .
ETHOLOGY, 2000, 106 (02) :105-116
[2]   Behavioral-independence features of complex heartbeat dynamics [J].
Amaral, LAN ;
Ivanov, PC ;
Aoyagi, N ;
Hidaka, I ;
Tomono, S ;
Goldberger, AL ;
Stanley, HE ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2001, 86 (26) :6026-6029
[3]   A wavelet-based method for multifractal image analysis.: I.: Methodology and test applications on isotropic and anisotropic random rough surfaces [J].
Arnédo, A ;
Decoster, N ;
Roux, SG .
EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (03) :567-600
[4]   Towards log-normal statistics in high Reynolds number turbulence [J].
Arneodo, A ;
Manneville, S ;
Muzy, JF .
EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (01) :129-140
[5]   CHARACTERIZING LONG-RANGE CORRELATIONS IN DNA-SEQUENCES FROM WAVELET ANALYSIS [J].
ARNEODO, A ;
BACRY, E ;
GRAVES, PV ;
MUZY, JF .
PHYSICAL REVIEW LETTERS, 1995, 74 (16) :3293-3296
[6]   Random cascades on wavelet dyadic trees [J].
Arneodo, A ;
Bacry, E ;
Muzy, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) :4142-4164
[7]   Scale-specific and scale-independent measures of heart rate variability as risk indicators [J].
Ashkenazy, Y ;
Lewkowicz, M ;
Levitan, J ;
Havlin, S ;
Saermark, K ;
Moelgaard, H ;
Thomsen, PEB ;
Moller, M ;
Hintze, U ;
Huikuri, HV .
EUROPHYSICS LETTERS, 2001, 53 (06) :709-715
[8]   Magnitude and sign correlations in heartbeat fluctuations [J].
Ashkenazy, Y ;
Ivanov, PC ;
Havlin, S ;
Peng, CK ;
Goldberger, AL ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 2001, 86 (09) :1900-1903
[9]  
ASHKENAZY Y, CONDMAT0111396
[10]  
Bacry E, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.026103