Exploring the connectivity between the cerebellum and motor cortex in humans

被引:261
作者
Daskalakis, ZJ
Paradiso, GO
Christensen, BK
Fitzgerald, PB
Gunraj, C
Chen, R
机构
[1] Ctr Addict & Mental Hlth, Schizophrenia Program, Toronto, ON, Canada
[2] Univ Toronto, Div Neurol, Toronto, ON, Canada
[3] Univ Toronto, Toronto Western Res Inst, Toronto, ON, Canada
[4] Alfred & Monash Univ, Alfred Psychiat Res Ctr, Dept Psychol Med, Melbourne, Vic, Australia
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2004年 / 557卷 / 02期
关键词
D O I
10.1113/jphysiol.2003.059808
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Animal studies have shown that cerebellar projections influence both excitatory and inhibitory neurones in the motor cortex but this connectivity has yet to be demonstrated in human subjects. In human subjects, magnetic or electrical stimulation of the cerebellum 5-7 ms before transcranial magnetic stimulation (TMS) of the motor cortex decreases the TMS-induced motor-evoked potential (MEP), indicating a cerebellar inhibition of the motor cortex (CBI). TMS also reveals inhibitory and excitatory circuits of the motor cortex, including a short-interval intracortical inhibition (SICI), long-interval intracortical. inhibition (LICI) and intracortical facilitation (ICF). This study used magnetic cerebellar stimulation to investigate connections between the cerebellum and these cortical circuits. Three experiments were performed on 11 subjects. The first experiment showed that with increasing test stimulus intensities, LICI, CBI and ICF decreased, while SICI increased. The second experiment showed that the presence of CBI reduced SICI and increased ICE The third experiment showed that the interaction between CBI and LICI reduced CBI. Collectively, these findings suggest that cerebellar stimulation results in changes to both inhibitory and excitatory neurones in the human motor cortex.
引用
收藏
页码:689 / 700
页数:12
相关论文
共 45 条
[1]   CEREBROCEREBELLAR COMMUNICATION SYSTEMS [J].
ALLEN, GI ;
TSUKAHARA, N .
PHYSIOLOGICAL REVIEWS, 1974, 54 (04) :957-1006
[2]   RELATIVE CONTRIBUTIONS OF THALAMIC RETICULAR NUCLEUS NEURONS AND INTRINSIC INTERNEURONS TO INHIBITION OF THALAMIC NEURONS PROJECTING TO THE MOTOR CORTEX [J].
ANDO, N ;
IZAWA, Y ;
SHINODA, Y .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (06) :2470-2485
[3]   Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms [J].
Andreasen, NC ;
Nopoulos, P ;
O'Leary, DS ;
Miller, DD ;
Wassink, T ;
Flaum, L .
BIOLOGICAL PSYCHIATRY, 1999, 46 (07) :908-920
[4]   THE MODERATOR MEDIATOR VARIABLE DISTINCTION IN SOCIAL PSYCHOLOGICAL-RESEARCH - CONCEPTUAL, STRATEGIC, AND STATISTICAL CONSIDERATIONS [J].
BARON, RM ;
KENNY, DA .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1986, 51 (06) :1173-1182
[5]   Mechanism of the silent period following transcranial magnetic stimulation - Evidence from epidural recordings [J].
Chen, R ;
Lozano, AM ;
Ashby, P .
EXPERIMENTAL BRAIN RESEARCH, 1999, 128 (04) :539-542
[6]   Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans [J].
Di Lazzaro, V ;
Oliviero, A ;
Profice, P ;
Saturno, E ;
Pilato, F ;
Insola, A ;
Mazzone, P ;
Tonali, P ;
Rothwell, JC .
ELECTROMYOGRAPHY AND MOTOR CONTROL-ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1998, 109 (05) :397-401
[7]   SPINAL MOTOR-NEURON EXCITABILITY DURING THE SILENT PERIOD AFTER CORTICAL STIMULATION [J].
FUHR, P ;
AGOSTINO, R ;
HALLETT, M .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1991, 81 (04) :257-262
[8]   EFFECTS ON PURKINJE CELLS OF SURFACE STIMULATION OF THE CEREBELLUM [J].
GRANIT, R ;
PHILLIPS, CG .
JOURNAL OF PHYSIOLOGY-LONDON, 1957, 135 (01) :73-+
[9]   Functional connectivity between cerebellum and primary motor cortex in the awake monkey [J].
Holdefer, RN ;
Miller, LE ;
Chen, LL ;
Houk, JC .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (01) :585-590
[10]   Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity [J].
Ilic, TV ;
Meintzschel, F ;
Cleff, U ;
Ruge, D ;
Kessler, KR ;
Ziemann, U .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 545 (01) :153-167