Cycloalkene ozonolysis: Collisionally mediated mechanistic branching

被引:73
作者
Chuong, B
Zhang, JY
Donahue, NM [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
关键词
D O I
10.1021/ja0485412
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Master equation calculations on a computational potential energy surface reveal that collisional stabilization at atmospheric pressure becomes important in the gas-phase ozonolysis of endocyclic alkenes for a carbon number between 8 and 15. Because the reaction products from endocyclic ozonolysis are tethered, this system is ideal for consideration of collisional energy transfer, as chemical activation is confined to a single reaction product. Collisional stabilization of the Criegee intermediate precedes collisional stabilization of the primary ozonide by roughly an order of magnitude in pressure. The stabilization of the Criegee intermediate leads to a dramatic transformation in the dominant oxidation pathway from a radical-forming process at low carbon number to a secondary ozonide-forming process at high carbon number. Secondary ozonide formation is important even for syn-isomer Criegee intermediates, contrary to previous speculation. We use substituted cyclohexenes as analogues for atmospherically important mono- and sesquiterpenes, which are major precursors for secondary organic aerosol formation in the atmosphere. Combining these calculations with literature experimental data, we conclude that the transformation from chemically activated to collisionally stabilized behavior most probably occurs between the mono- and sesquiterpenes, thus causing dramatically different atmospheric behavior.
引用
收藏
页码:12363 / 12373
页数:11
相关论文
共 63 条
[1]   Unimolecular isomerizations and oxygen atom loss in formaldehyde and acetaldehyde carbonyl oxides. A theoretical investigation [J].
Anglada, JM ;
Bofill, JM ;
Olivella, S ;
Sole, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (19) :4636-4647
[2]  
Anglada JM, 1999, CHEM-EUR J, V5, P1809, DOI 10.1002/(SICI)1521-3765(19990604)5:6<1809::AID-CHEM1809>3.3.CO
[3]  
2-E
[4]   Significance of HOx and peroxides production due to alkene ozonolysis during fall and winter:: A modeling study [J].
Ariya, PA ;
Sander, R ;
Crutzen, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D14) :17721-17738
[5]   Products of the gas-phase reaction of O3 with cyclohexene [J].
Aschmann, SM ;
Tuazon, EC ;
Arey, J ;
Atkinson, R .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (13) :2247-2255
[6]   Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and alkenes [J].
Atkinson, R .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (02) :215-290
[7]   Atmospheric chemistry of VOCs and NOx [J].
Atkinson, R .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) :2063-2101
[8]   OH RADICAL PRODUCTION FROM THE GAS-PHASE REACTIONS OF O-3 WITH A SERIES OF ALKENES UNDER ATMOSPHERIC CONDITIONS [J].
ATKINSON, R ;
ASCHMANN, SM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (07) :1357-1363
[9]   EVALUATION OF KINETIC AND MECHANISTIC DATA FOR MODELING OF PHOTOCHEMICAL SMOG [J].
ATKINSON, R ;
LLOYD, AC .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1984, 13 (02) :315-444
[10]  
Bailey P. S., 1978, OZONATION ORGANIC CH, V1