Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar

被引:116
作者
Liu, Fei [1 ]
He, Yong [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310029, Zhejiang, Peoples R China
关键词
Visible and near infrared spectroscopy; Successive projections algorithm; Variable selection; Least squares-support vector machine; Plum vinegar; Organic acids; NEAR-INFRARED SPECTROSCOPY; SOLUBLE SOLIDS CONTENT; PREDICTION; ELIMINATION; WAVELENGTHS; REGRESSION; IMPROVE; PH;
D O I
10.1016/j.foodchem.2009.01.073
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the acetic, tartaric and lactic acids of plum vinegar based on a newly proposed combination of successive projections algorithm-least squares-support vector machine (SPA-LS-SVM). SPA, compared with regression coefficients (RC), was applied to select effective wavelengths (EWs) with least collinearity and redundancies. Five concentration levels (100%, 80%. 60%, 40% and 20%) of plum vinegar were studied. Multiple linear regression (MLR) and partial least squares (PLS) models were developed for comparison. The results indicated that SPA-LS-SVM achieved the optimal performance for three acids comparing with full-spectrum PLS, SPA-MLR, SPA-PLS, RC-PLS and RC-LS-SVM. The root mean square error of prediction (RMSEP) was 0.3581, 0.0714 and 0.0201 for acetic, tartaric and lactic acids, respectively. The overall results indicated that Vis/NIR spectroscopy incorporated to SPA-LS-SVM could be applied as an alternative fast and accurate method for the determination of organic acids of plum vinegars. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1430 / 1436
页数:7
相关论文
共 29 条
[1]   Variable selection in wavelet regression models [J].
Alsberg, BK ;
Woodward, AM ;
Winson, MK ;
Rowland, JJ ;
Kell, DB .
ANALYTICA CHIMICA ACTA, 1998, 368 (1-2) :29-44
[2]   The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J].
Araújo, MCU ;
Saldanha, TCB ;
Galvao, RKH ;
Yoneyama, T ;
Chame, HC ;
Visani, V .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2001, 57 (02) :65-73
[3]   Near infrared spectroscopy [J].
Bokobza, L .
JOURNAL OF NEAR INFRARED SPECTROSCOPY, VOL 6 1998, 1998, :3-17
[4]   Study of the aging and oxidation processes of vinegar samples from different origins during storage by near-infrared spectroscopy [J].
Casale, M ;
Abajo, MJS ;
Sáiz, JMG ;
Pizarro, C ;
Forina, M .
ANALYTICA CHIMICA ACTA, 2006, 557 (1-2) :360-366
[5]   Elimination of uninformative variables for multivariate calibration [J].
Centner, V ;
Massart, DL ;
deNoord, OE ;
deJong, S ;
Vandeginste, BM ;
Sterna, C .
ANALYTICAL CHEMISTRY, 1996, 68 (21) :3851-3858
[6]   Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes [J].
Chauchard, F ;
Cogdill, R ;
Roussel, S ;
Roger, JM ;
Bellon-Maurel, V .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 71 (02) :141-150
[7]   Variable selection for neural networks in multivariate calibration [J].
Despagne, F ;
Massart, DL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 40 (02) :145-163
[8]  
Esbensen K.H., 2010, Multivariate Data Analysis - in Practice: An Introduction to Multivariate Data Analysis and Experimental Design, V5Th
[9]   Application of wavelet transforms to improve prediction precision of near infrared spectra [J].
Fu, XG ;
Yan, GZ ;
Chen, B ;
Li, HB .
JOURNAL OF FOOD ENGINEERING, 2005, 69 (04) :461-466
[10]   A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm [J].
Galvao, Roberto Kawakami Harrop ;
Ugulino Araujo, Mario Cesar ;
Fragoso, Wallace Duarte ;
Silva, Edvan Cirino ;
Jose, Gledson Emidio ;
Carreiro Soares, Sofacles Figueredo ;
Paiva, Henrique Mohallem .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2008, 92 (01) :83-91