Harmonic analysis on the Quantum Lorentz Group

被引:33
作者
Buffenoir, E
Roche, P
机构
[1] Univ Montpellier 2, CNRS, ESA 5032, Lab Phys Math & Theor, F-34000 Montpellier, France
[2] CERN, Div TH, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1007/s002200050736
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a continuation of 6j symbols of SUq(2) with complex spins, we give a new description of the unitary representations of SLq(2, C)(R) and find explicit expressions for the characters of unitary representations of SLq(2, C)(R). We prove a Plancherel theorem for the Quantum Lorentz Group.
引用
收藏
页码:499 / 555
页数:57
相关论文
共 48 条
[1]   COMBINATORIAL QUANTIZATION OF THE HAMILTONIAN CHERN-SIMONS THEORY .1. [J].
ALEKSEEV, AY ;
GROSSE, H ;
SCHOMERUS, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :317-358
[2]   Representation theory of Chern-Simons observables [J].
Alekseev, AY ;
Schomerus, V .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (02) :447-510
[3]  
[Anonymous], 1985, MEM AM MATH SOC AMS, DOI DOI 10.1090/MEMO/0319
[4]  
ARNAUDON D, IN PRESS LETT MATH P
[5]  
Ashtekar Abhay., 1991, LECT NONPERTURBATIVE
[6]   SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH COEFFICIENTS OR 6-J SYMBOLS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :1008-1016
[7]   UNIVERSAL EXCHANGE ALGEBRA FOR BLOCH WAVES AND LIOUVILLE THEORY [J].
BABELON, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (03) :619-643
[8]   A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations [J].
Babelon, O ;
Bernard, D ;
Billey, E .
PHYSICS LETTERS B, 1996, 375 (1-4) :89-97
[9]   Link invariants and combinatorial quantization of Hamiltonian Chern Simons theory [J].
Buffenoir, E ;
Roche, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (02) :331-365
[10]  
BUFFENOIR E, UNPUB TENSOR PRODUCT