In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin

被引:134
作者
Rosenblad, C
Gronborg, M
Hansen, C
Blom, N
Meyer, M
Johansen, J
Dago, L
Kirik, D
Patel, UA
Lundberg, C
Trono, D
Björklund, A
Johansen, TE
机构
[1] Lund Univ, Wallenberg Neurosci Ctr, S-22362 Lund, Sweden
[2] NeuroSearch AS, Ballerup, Denmark
[3] Panum Inst, Copenhagen, Denmark
[4] Tech Univ, Ctr Biol Sequence Analysis, Lyngby, Denmark
[5] Odense Univ, USD, Odense, Denmark
[6] Cambridge BioSci Ltd, Cambridge, England
[7] Univ Geneva, Sch Med, Dept Genet & Microbiol, CH-1211 Geneva, Switzerland
关键词
D O I
10.1006/mcne.1999.0817
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The glial cell line-derived neurotrophic factor (GDNF)-family of neurotrophic factors consisted until recently of three members, GDNF, neurturin, and persephin. We describe here the cloning of a new GDNF-family member, neublastin (NBN), identical to artemin (ART), recently published (Baloh et al., 1998). Addition of NBN/ART to cultures of fetal mesencephalic dopamine (DA) neurons increased the number of surviving tyrosine hydroxylase (TH)-immunoreactive neurons by similar to 70%, similar to the maximal effect obtained with GDNF. To investigate the neuroprotective effects in vivo, lentiviral vectors carrying the cDNA for NBN/ART or GDNF were injected into the striatum and Ventral midbrain. Three weeks after an intrastriatal 6-hydroxydopamine lesion only about 20% of the nigral DA neurons were left in the control group, while 80-90% of the DA neurons remained in the NBN/ART and GDNF treatment groups, and the striatal TH-immunoreactive innervation was partly spared. We conclude that NBN/ART, similarly to GDNF, is a potent neuroprotective factor for the nigrostriatal DA neurons in vivo.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 56 条
[1]   ESTIMATION OF NUCLEAR POPULATION FROM MICROTOME SECTIONS [J].
ABERCROMBIE, M .
ANATOMICAL RECORD, 1946, 94 (02) :239-247
[2]   Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons [J].
Åkerud, P ;
Alberch, J ;
Eketjäll, S ;
Wagner, J ;
Arenas, E .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (01) :70-78
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[4]   TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret [J].
Baloh, RH ;
Tansey, MG ;
Golden, JP ;
Creedon, DJ ;
Heuckeroth, RO ;
Keck, CL ;
Zimonjic, DB ;
Popescu, NC ;
Johnson, EM ;
Milbrandt, J .
NEURON, 1997, 18 (05) :793-802
[5]   Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-RET receptor complex [J].
Baloh, RH ;
Tansey, MG ;
Lampe, PA ;
Fahrner, TJ ;
Enomoto, H ;
Simburger, KS ;
Leitner, ML ;
Araki, T ;
Johnson, EM ;
Milbrandt, J .
NEURON, 1998, 21 (06) :1291-1302
[6]   MESENCEPHALIC DOPAMINERGIC-NEURONS PROTECTED BY GDNF FROM AXOTOMY-INDUCED DEGENERATION IN THE ADULT BRAIN [J].
BECK, KD ;
VALVERDE, J ;
ALEXI, T ;
POULSEN, K ;
MOFFAT, B ;
VANDLEN, RA ;
ROSENTHAL, A ;
HEFTI, F .
NATURE, 1995, 373 (6512) :339-341
[7]   Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease [J].
BilangBleuel, A ;
Revah, F ;
Colin, P ;
Locquet, I ;
Robert, JJ ;
Mallet, J ;
Horellou, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8818-8823
[8]  
Blomer U, 1997, J VIROL, V71, P6641
[9]   GFRα1 is an essential receptor component for GDNF in the developing nervous system and kidney [J].
Cacalano, G ;
Fariñas, I ;
Wang, LC ;
Hagler, K ;
Forgie, A ;
Moore, M ;
Armanini, M ;
Phillips, H ;
Ryan, AM ;
Reichardt, LF ;
Hynes, M ;
Davies, A ;
Rosenthal, A .
NEURON, 1998, 21 (01) :53-62
[10]   Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson's disease: Studies on medial forebrain bundle and striatal lesions [J].
Chang, JW ;
Wachtel, SR ;
Young, D ;
Kang, UJ .
NEUROSCIENCE, 1999, 88 (02) :617-628