Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages

被引:292
作者
Ling, Yun M.
Shaw, Michael H.
Ayala, Carol
Coppens, Isabelle
Taylor, Gregory A.
Ferguson, David J. P.
Yap, George S. [1 ]
机构
[1] Brown Univ, Dept Mol Microbiol & Immunol, Div Biol & Med, Providence, RI 02912 USA
[2] Rhode Isl Hosp, Core Res Labs, Providence, RI 02903 USA
[3] Johns Hopkins Univ, Sch Publ Hlth, Dept Mol Microbiol & Immunol, Baltimore, MD 21205 USA
[4] Duke Univ, Dept Med, Dept Mol Genet & Microbiol, Dept Immunol, Durham, NC 27710 USA
[5] Duke Univ, Ctr Study Aging, Durham, NC 27710 USA
[6] GRECC VA Med Ctr, Durham, NC 27710 USA
[7] John Radcliffe Hosp, Nuffield Dept Pathol, Oxford OX3 9DU, England
关键词
D O I
10.1084/jem.20061318
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Apicomplexan protozoan pathogens avoid destruction and establish a replicative niche within host cells by forming a nonfusogenic parasitophorous vacuole ( PV). Here we present evidence for lysosome-mediated degradation of Toxoplasma gondii after invasion of macrophages activated in vivo. Pathogen elimination was dependent on the interferon gamma inducible-p47 GTPase, IGTP, required PI3K activity, and was preceded by PV membrane indentation, vesiculation, disruption, and, surprisingly, stripping of the parasite plasma membrane. Denuded parasites were enveloped in autophagosome-like vacuoles, which ultimately fused with lysosomes. These observations outline a series of mechanisms used by effector cells to redirect the fate of a classically nonfusogenic intracellular pathogen toward a path of immune elimination.
引用
收藏
页码:2063 / 2071
页数:9
相关论文
共 30 条
[1]  
ADAMS LB, 1990, J IMMUNOL, V144, P2725
[2]   The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage [J].
Bekpen, C ;
Hunn, JP ;
Rohde, C ;
Parvanova, I ;
Guethlein, L ;
Dunn, DM ;
Glowalla, E ;
Leptin, M ;
Howard, JC .
GENOME BIOLOGY, 2005, 6 (11)
[3]   p47 GTPases regulate Toxoplasma gondii survival in activated macrophages [J].
Butcher, BA ;
Greene, RI ;
Henry, SC ;
Annecharico, KL ;
Weinberg, JB ;
Denkers, EY ;
Sher, A ;
Taylor, GA .
INFECTION AND IMMUNITY, 2005, 73 (06) :3278-3286
[4]  
Dubey J. P., 1988, TOXOPLASMOSIS ANIMAL
[5]   STUDIES ON THE MECHANISMS OF AUTOPHAGY - FORMATION OF THE AUTOPHAGIC VACUOLE [J].
DUNN, WA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (06) :1923-1933
[6]   Maternal inheritance and stage-specific variation of the apicoplast in Toxoplasma gondii during development in the intermediate and definitive host [J].
Ferguson, DJP ;
Henriquez, FL ;
Kirisits, MJ ;
Muench, SP ;
Prigge, ST ;
Rice, DW ;
Roberts, CW ;
McLeod, RL .
EUKARYOTIC CELL, 2005, 4 (04) :814-826
[7]   Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells [J].
Fölsch, H ;
Pypaert, M ;
Schu, P ;
Mellman, I .
JOURNAL OF CELL BIOLOGY, 2001, 152 (03) :595-606
[8]   De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii [J].
Fox, BA ;
Bzik, DJ .
NATURE, 2002, 415 (6874) :926-929
[9]   Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages [J].
Gutierrez, MG ;
Master, SS ;
Singh, SB ;
Taylor, GA ;
Colombo, MI ;
Deretic, V .
CELL, 2004, 119 (06) :753-766
[10]   Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy [J].
Haupts, U ;
Maiti, S ;
Schwille, P ;
Webb, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13573-13578