Monitoring Charge Exchange in P3HT-Nanotube Composites Using Optical and Electrical Characterisation

被引:7
作者
Alexandrou, Ioannis [1 ]
Lioudakis, Emmanouil [2 ,3 ]
Delaportas, Dimitrios [1 ]
Zhao, C. Z. [1 ]
Othonos, Andreas [2 ]
机构
[1] Univ Liverpool, Liverpool L69 3GJ, Merseyside, England
[2] Univ Cyprus, Dept Phys, Res Ctr Ultrafast Sci, CY-1678 Nicosia, Cyprus
[3] Cyprus Inst, Energy Environm & Water Res Ctr, CY-1645 Nicosia, Cyprus
来源
NANOSCALE RESEARCH LETTERS | 2009年 / 4卷 / 07期
关键词
WALLED CARBON NANOTUBES; NANOCOMPOSITES; PERFORMANCE;
D O I
10.1007/s11671-009-9287-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Charge exchange at the bulk heterojunctions of composites made by mixing single wall nanotubes (SWNTs) and polymers show potential for use in optoelectronic devices such as solar cells and optical sensors. The density/total area of these heterojunctions is expected to increase with increasing SWNT concentration but the efficiency of solar cell peaks at low SWNT concentrations. Most researchers use current-voltage measurements to determine the evolution of the SWNT percolation network and optical absorption measurements to monitor the spectral response of the composites. However, these methods do not provide a detailed account of carrier transport at the concentrations of interest; i.e., near or below the percolation threshold. In this article, we show that capacitance-voltage (C-V) response of (metal)-(oxide)-(semiconducting composite) devices can be used to fill this gap in studying bulk heterojunctions. In an approach where we combine optical absorption methods with C-V measurements we can acquire a unified optoelectronic response from P3HT-SWNT composites. This methodology can become an important tool for optoelectronic device optimization.
引用
收藏
页码:635 / 639
页数:5
相关论文
共 26 条
[1]  
AARAB H, 2001, SYNTHETIC MET, V121, P1591
[2]   Thermal property of regioregular poly(3-hexylthiophene)/nanotube composites using modified single-walled carbon nanotubes via ion irradiation [J].
Adhikari, A. R. ;
Huang, M. ;
Bakhru, H. ;
Chipara, M. ;
Ryu, C. Y. ;
Ajayan, P. M. .
NANOTECHNOLOGY, 2006, 17 (24) :5947-5953
[3]   Carbon nanotube polymer composites [J].
Andrews, R ;
Weisenberger, MC .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) :31-37
[4]   Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices [J].
Arranz-Andres, Javier ;
Blau, Werner J. .
CARBON, 2008, 46 (15) :2067-2075
[5]   Carbon nanotubes based nanocomposites for photocurrent improvement [J].
Canestraro, Carla D. ;
Schnitzler, Mariane C. ;
Zarbin, Aldo J. G. ;
da Luz, M. G. E. ;
Roman, Lucimara S. .
APPLIED SURFACE SCIENCE, 2006, 252 (15) :5575-5578
[6]   Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices [J].
Geng, Jianxin ;
Zeng, Tingying .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (51) :16827-16833
[7]  
HUA N, 2008, COMPOS PART A-APPL S, V39, P893
[8]   Self-assembly of SWCNT in P3HT matrix [J].
Kumar, Jitendra ;
Singh, Rajiv K. ;
Kumar, Vikram ;
Rastogi, R. C. ;
Singh, Ramadhar .
DIAMOND AND RELATED MATERIALS, 2007, 16 (03) :446-453
[9]   Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells [J].
Kymakis, E. ;
Servati, P. ;
Tzanetakis, P. ;
Koudoumas, E. ;
Kornilios, N. ;
Rompogiannakis, I. ;
Franghiadakis, Y. ;
Amaratunga, G. A. J. .
NANOTECHNOLOGY, 2007, 18 (43)
[10]   Post-fabrication annealing effects in polymer-nanotube photovoltaic cells [J].
Kymakis, E ;
Koudoumas, E ;
Franghiadakis, I ;
Amaratunga, GAJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (06) :1058-1062