This work examined the colocalization, trafficking, and interactions of key proteins involved in lipolysis during brief cAMP-dependent protein kinase A (PKA) activation. Double label immunofluorescence analysis of 3T3-L1 adipocytes indicated that PKA activation increases the translocation of hormone-sensitive lipase (HSL) to perilipin A (Plin)-containing droplets and increases the colocalization of adipose tissue triglyceride lipase (Atgl) with its coactivator, Abhd5. Imaging of live 3T3-L1 preadipocytes transfected with Aquorea victoria-based fluorescent reporters demonstrated that HSL rapidly and specifically translocates to lipid droplets (LDs) containing Plin, and that this translocation is partially dependent on Plin phosphorylation. HSL closely, if not directly, interacts with Plin, as indicated by fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) experiments. In contrast, tagged Atg1 did not support FRET or BiFC with Plin, although it did modestly translocate to LDs upon stimulation. Abhd5 strongly interacted with Plin in the basal state, as indicated by FRET and BiFC. PKA activation rapidly (within minutes) decreased FRET between Abhd5 and Plin, and this decrease depended upon Plin phosphorylation. Together, these results indicate that Plin mediates hormone-stimulated lipolysis via direct and indirect mechanisms. Plin indirectly controls Atg1 activity by regulating accessibility to its coactivator, Abhd5. In contrast, Plin directly regulates the access of HSL to substrate via close, if not direct, interactions. The differential interactions of HSL and Atg1 with Plin and Abhd5 also explain the findings that following stimulation, HSL and Atg1 are differentially enriched at specific LDs.