Defect-induced plating of lithium metal within porous graphene networks

被引:412
作者
Mukherjee, Rahul [1 ]
Thomas, Abhay V. [1 ]
Datta, Dibakar [2 ]
Singh, Eklavya [1 ]
Li, Junwen [3 ]
Eksik, Osman [1 ]
Shenoy, Vivek B. [3 ]
Koratkar, Nikhil [1 ]
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Brown Univ, Providence, RI 02912 USA
[3] Univ Penn, Philadelphia, PA 19104 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
CATHODE MATERIALS; LIFEPO4/C COMPOSITE; CAPACITY RETENTION; ION; CARBON; MECHANISMS; ENERGY; LI; ELECTRODES; ADSORPTION;
D O I
10.1038/ncomms4710
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium metal is known to possess a very high theoretical capacity of 3,842mAhg(-1) in lithium batteries. However, the use of metallic lithium leads to extensive dendritic growth that poses serious safety hazards. Hence, lithium metal has long been replaced by layered lithium metal oxide and phospho-olivine cathodes that offer safer performance over extended cycling, although significantly compromising on the achievable capacities. Here we report the defect-induced plating of metallic lithium within the interior of a porous graphene network. The network acts as a caged entrapment for lithium metal that prevents dendritic growth, facilitating extended cycling of the electrode. The plating of lithium metal within the interior of the porous graphene structure results in very high specific capacities in excess of 850mAhg(-1). Extended testing for over 1,000 charge/discharge cycles indicates excellent reversibility and coulombic efficiencies above 99%.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[4]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[5]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[6]   Structural, electronic, and chemical properties of nanoporous carbon [J].
Carlsson, JM ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[7]   Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Stoll, ME ;
Henriksen, G ;
Vissers, DR ;
Amine, K .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :278-285
[8]   High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries [J].
Chen, Jin-Ming ;
Hsu, Chia-Haw ;
Lin, Yu-Run ;
Hsiao, Mei-Hui ;
Fey, George Ting-Kuo .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :498-502
[9]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[10]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593