The total variation flow in RN

被引:182
作者
Bellettini, G
Caselles, V
Novaga, M
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Univ Pompeu Fabra, Dept Tecnol, Barcelona, Spain
关键词
total variation flow; nonlinear parabolic equations; finite perimeter sets; calibrable sets;
D O I
10.1006/jdeq.2001.4150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the minimizing total variation flow u(t) = div(Du/\DU\) in R-N for initial data u(0) in L-loc(1)(R-N), proving an existence and uniqueness result. Then we characterize all bounded sets Omega of finite perimeter in R-2 which evolve without distortion of the boundary. In that case, no = chi(Omega) evolves as u(t, x) = (1 - lambda(Omega)t)(+) chi(Omega),, where chi(Omega) is the characteristic function of Omega, lambda(Omega) := P(Omega)/\Omega\, and P(Omega) denotes the perimeter of Omega. We give examples of such sets. The solutions are such that upsilon := lambda(Omega)chi(Omega) solves the eigenvalue problem -div(Dupsilon/\Dupsilon\) = upsilon. We construct other explicit solutions of this problem. As an application, we construct explicit solutions of the denoising problem in image processing. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:475 / 525
页数:51
相关论文
共 38 条
[1]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[2]  
Ambrosio L., 2001, J. Eur. Math. Soc., V3, P39
[3]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[4]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[5]  
Andreu F., 2001, DIFFER INTEGRAL EQU, V14, P321
[6]  
ANDREU F, 2000, QUALITATIVE PROPERTI
[7]   Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with L1 data [J].
Andreu-Vaillo, F ;
Caselles, V ;
Mazón, JM .
MATHEMATISCHE ANNALEN, 2002, 322 (01) :139-206
[8]  
[Anonymous], 2001, INTERFACES FREE BOUN, DOI DOI 10.4171/IFB/47
[9]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[10]   On a crystalline variational problem, Part II: BV regularity and structure of minimizers on facets [J].
Bellettini, G ;
Novaga, M ;
Paolini, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (03) :193-217