On the direct determination of the rotation tensor from the deformation gradient

被引:8
作者
Lu, J
Papadopoulos, P
机构
[1] Department of Mechanical Engineering, University of California at Berkeley, Berkeley
关键词
D O I
10.1177/108128659700200102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An explicit representation of the rotation tensor is given in terms of the deformation gradient. The derivation does not require the a priori determination of the stretch tenser. Instead, it relies on systematic use of the Cayley-Hamilton theorem and basic properties of proper orthogonal tensors.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 11 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS F
[2]  
GOLDSTEIN H, 1980, CLASSICAL MECHANICS
[3]  
Guo Z.-H., 1981, SOLID MECH ARCH, V6, P451
[4]   DETERMINATION OF THE STRETCH AND ROTATION IN THE POLAR DECOMPOSITION OF THE DEFORMATION GRADIENT [J].
HOGER, A ;
CARLSON, DE .
QUARTERLY OF APPLIED MATHEMATICS, 1984, 42 (01) :113-117
[5]   CLOSED-FORM SOLUTION OF ABSOLUTE ORIENTATION USING UNIT QUATERNIONS [J].
HORN, BKP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :629-642
[6]  
Horn R. A., 1986, Matrix analysis
[7]  
MARSDEN JE, 1983, MATH F ELASTICITY
[8]  
RIVLIN RS, 1955, J RATION MECH ANAL, V4, P681
[9]   DETERMINATION OF C1/2, C-1/2 AND MORE GENERAL ISOTROPIC TENSOR FUNCTIONS OF C [J].
TING, TCT .
JOURNAL OF ELASTICITY, 1985, 15 (03) :319-323
[10]  
Truesdell C., 1960, HDB PHYSIK, VIII/1, P226