Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers

被引:73
作者
Hower, Jason C. [1 ]
He, Yi [1 ]
Bernards, Matthew T. [1 ]
Jiang, Shaoyi [1 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2397681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a molecular simulation study of the interactions of a protein (lysozyme) with self-assembled monolayers (SAMs) of mannitol and sorbitol terminated alkanethiols in the presence of explicit water molecules and ions. The all-atom simulations were performed to calculate the force generated on the protein as a function of its distance above the SAM surfaces. The structural and dynamic properties of water molecules both above the SAM surfaces and around the SAM head groups were analyzed to provide a better understanding of the nonfouling behavior of the sugar-based SAM surfaces. Results from this work suggest that both mannitol and sorbitol SAMs generate a tightly bound, structured water layer around the SAM chains. This hydration layer creates a repulsive force on the protein when it approaches the surface, resulting in a nonfouling surface despite the presence of hydrogen-bond donor groups. This work demonstrates the importance of strong surface-water interactions for surface resistance to nonspecific protein adsorption. (c) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly [J].
Boozer, C ;
Yu, QM ;
Chen, SF ;
Lee, CY ;
Homola, J ;
Yee, SS ;
Jiang, SY .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 90 (1-3) :22-30
[3]  
CHANG Y, COMMUNICATION
[4]   Surveying for surfaces that resist the adsorption of proteins [J].
Chapman, RG ;
Ostuni, E ;
Takayama, S ;
Holmlin, RE ;
Yan, L ;
Whitesides, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8303-8304
[5]   Structure, dynamics, and energetics of water at the surface of a small globular protein: A molecular dynamics simulation [J].
Dastidar, SG ;
Mukhopadhyay, C .
PHYSICAL REVIEW E, 2003, 68 (02) :9-021921
[6]   HYDRATION AND MOBILITY OF IONS IN SOLUTION [J].
IMPEY, RW ;
MADDEN, PA ;
MCDONALD, IR .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (25) :5071-5083
[7]   PROTEIN SURFACE INTERACTIONS IN THE PRESENCE OF POLYETHYLENE OXIDE .1. SIMPLIFIED THEORY [J].
JEON, SI ;
LEE, JH ;
ANDRADE, JD ;
DEGENNES, PG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1991, 142 (01) :149-158
[8]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935
[9]  
Leach A. R., 2001, MOL MODELLING PRINCI
[10]   Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior [J].
Li, LY ;
Chen, SF ;
Zheng, J ;
Ratner, BD ;
Jiang, SY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (07) :2934-2941