Proportional hazards models: a latent competing risk approach

被引:20
作者
Gelfand, AE
Ghosh, SK
Christiansen, C
Soumerai, SB
McLaughlin, TJ
机构
[1] Univ Connecticut, Coll Liberal Arts & Sci, Dept Stat, Storrs, CT 06269 USA
[2] N Carolina State Univ, Raleigh, NC USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Harvard Pilgrim Hlth Care, Boston, MA USA
关键词
censoring; competing risk; data augmentation; semiparametric regression;
D O I
10.1111/1467-9876.00199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel semiparametric version of the widely used proportional hazards survival model. Features include an arbitrarily rich class of continuous base-line hazards, an attractive epidemiological interpretation of the hazard as a latent competing risk model and trivial handling of censoring. Models are fitted by using a data augmentation scheme. The methodology is applied to a data set recording times to first hospitalization following clinical diagnosis of acquired immune deficiency syndrome for a sample of 169 patients.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 28 条
  • [1] Aitkin M., 1989, STAT MODELLING GLIM
  • [2] [Anonymous], APPL STAT, DOI DOI 10.2307/2347565
  • [3] ARJAS E, 1994, STAT SINICA, V4, P505
  • [4] COVARIANCE ANALYSIS OF CENSORED SURVIVAL DATA
    BRESLOW, N
    [J]. BIOMETRICS, 1974, 30 (01) : 89 - 99
  • [5] CARLIN BP, 1995, J ROY STAT SOC B MET, V57, P473
  • [6] Cox D. R, 1962, RENEWAL THEORY
  • [7] Cox D. R., 1984, ANAL SURVIVAL DATA
  • [8] COX DR, 1972, J R STAT SOC B, V34, P187
  • [9] BAYESIAN-INFERENCE FOR GENERALIZED LINEAR AND PROPORTIONAL HAZARDS MODELS VIA GIBBS SAMPLING
    DELLAPORTAS, P
    SMITH, AFM
    [J]. APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1993, 42 (03): : 443 - 459
  • [10] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38