Symmetric informationally complete quantum measurements

被引:750
作者
Renes, JM [1 ]
Blume-Kohout, R
Scott, AJ
Caves, CM
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.1737053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the existence in arbitrary finite dimensions d of a positive operator valued measure (POVM) comprised of d(2) rank-one operators all of whose operator inner products are equal. Such a set is called a "symmetric, informationally complete" POVM (SIC-POVM) and is equivalent to a set of d(2) equiangular lines in C-d. SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum mechanics. We construct SIC-POVMs in dimensions two, three, and four. We further conjecture that a particular kind of group-covariant SIC-POVM exists in arbitrary dimensions, providing numerical results up to dimension 45 to bolster this claim. (C) 2004 American Institute of Physics.
引用
收藏
页码:2171 / 2180
页数:10
相关论文
共 26 条
[1]   Finite normalized tight frames [J].
Benedetto, JJ ;
Fickus, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :357-385
[3]   Unknown quantum states: The quantum de Finetti representation [J].
Caves, CM ;
Fuchs, CA ;
Schack, R .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4537-4559
[4]  
DARIANO GM, QUANTPH0310013
[5]  
DELSARTE P, 1975, PHILIPS RES REP, V30, P91
[6]   Equiangular lines in Cr [J].
Et-Taoui, B .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02) :201-207
[7]   Equiangular lines in Cr (part II) [J].
Et-Taoui, B .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (04) :483-486
[8]  
FUCHS C, COMMUNICATION
[9]  
Fuchs CA, 2003, QUANTUM INF COMPUT, V3, P377
[10]  
FUCHS CA, QUANTPH0205039