In pursuit of greater understanding of structure property relationships in NLO chromophores. a series of molecules consisting of three aromatic rings was synthesized. The relative positions of benzene and thiophene rings in these molecules were varied. Theoretical calculations also suggest that the use of a slightly electron deficient heteroaromatic, such as thiazole, can increase beta through the concept of an electronic gradient. The use of this heteroaromatic in the correct orientation can compensate for the energetic barrier that benzene presents during charge-transfer. Hyper-Raleigh Scattering (HRS) measurements on three of these "gradient bridge" type chromophores show that benzene located at the donor end provided the highest hyperpolarizability. The poor solubility of these three-ring systems severely limited their processability and gave considerable synthetic challenges. The difference in theoretical and experimental trends of beta are discussed.