Digital cell quantification identifies global immune cell dynamics during influenza infection

被引:91
作者
Altboum, Zeev [1 ]
Steuerman, Yael [2 ]
David, Eyal [2 ]
Barnett-Itzhaki, Zohar [1 ]
Valadarsky, Liran [1 ]
Keren-Shaul, Hadas [1 ]
Meningher, Tal [3 ,4 ]
Mendelson, Ella [3 ,5 ]
Mandelboim, Michal [3 ]
Gat-Viks, Irit [2 ]
Amit, Ido [1 ]
机构
[1] Weizmann Inst Sci, Dept Immunol, Rehovot, Israel
[2] Tel Aviv Univ, Cell Res & Immunol Dept, IL-69978 Tel Aviv, Israel
[3] Sheba Med Ctr, Cent Virol Lab, Minist Hlth, Publ Hlth Serv, Ramat Gan, Israel
[4] Bar Ilan Univ, Fac Life Sci, Ramat Gan, Israel
[5] Tel Aviv Univ, Sackler Fac Med, Sch Publ Hlth, Dept Epidemiol & Prevent Med, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
dendritic cells; cell quantification; immune cell dynamics; influenza infection; deconvolution approach; HEMATOPOIETIC PROGENITOR CELLS; T-CELLS; EXPRESSION DECONVOLUTION; PERIPHERAL-BLOOD; VIRUS; CYTOMETRY; RESPONSES; LYMPH; RECONSTRUCTION; REGULARIZATION;
D O I
10.1002/msb.134947
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abstract Hundreds of immune cell types work in coordination to maintain tissue homeostasis. Upon infection, dramatic changes occur with the localization, migration, and proliferation of the immune cells to first alert the body of the danger, confine it to limit spreading, and finally extinguish the threat and bring the tissue back to homeostasis. Since current technologies can follow the dynamics of only a limited number of cell types, we have yet to grasp the full complexity of global in vivo cell dynamics in normal developmental processes and disease. Here, we devise a computational method, digital cell quantification (DCQ), which combines genome-wide gene expression data with an immune cell compendium to infer in vivo changes in the quantities of 213 immune cell subpopulations. DCQ was applied to study global immune cell dynamics in mice lungs at ten time points during 7 days of flu infection. We find dramatic changes in quantities of 70 immune cell types, including various innate, adaptive, and progenitor immune cells. We focus on the previously unreported dynamics of four immune dendritic cell subtypes and suggest a specific role for CD103(+) CD11b(-) DCs in early stages of disease and CD8(+) pDC in late stages of flu infection. Synopsis image A method is presented to infer the changes in the quantities of 213 immune cell types within a complex in vivo cell population. High-resolution temporal analysis during flu infection reveals specific roles of dendritic cell subtypes in early and late disease phases. A systematic approach for exploring in vivo immune cell dynamics is presented. Computational quantification of over 200 immune cell subpopulations is possible. A comprehensive view of influenza infection dynamics uncovers changes in dozens of distinct immune cell subpopulations. Plasmacytoid dendritic cells serve as a cavalry to maintain long-lasting host defense against influenza infection.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses [J].
Amit, Ido ;
Garber, Manuel ;
Chevrier, Nicolas ;
Leite, Ana Paula ;
Donner, Yoni ;
Eisenhaure, Thomas ;
Guttman, Mitchell ;
Grenier, Jennifer K. ;
Li, Weibo ;
Zuk, Or ;
Schubert, Lisa A. ;
Birditt, Brian ;
Shay, Tal ;
Goren, Alon ;
Zhang, Xiaolan ;
Smith, Zachary ;
Deering, Raquel ;
McDonald, Rebecca C. ;
Cabili, Moran ;
Bernstein, Bradley E. ;
Rinn, John L. ;
Meissner, Alex ;
Root, David E. ;
Hacohen, Nir ;
Regev, Aviv .
SCIENCE, 2009, 326 (5950) :257-263
[3]  
Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
[4]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[5]   Consortium biology in immunology: the perspective from the Immunological Genome Project [J].
Benoist, Christophe ;
Lanier, Lewis ;
Merad, Miriam ;
Mathis, Diane .
NATURE REVIEWS IMMUNOLOGY, 2012, 12 (10) :734-740
[6]   Canine CD4+CD8+ double positive T cells in peripheral blood have features of activated T cells [J].
Bismarck, Doris ;
Schuetze, Nicole ;
Moore, Peter ;
Buettner, Mathias ;
Alber, Gottfried ;
v. Buttlar, Heiner .
VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2012, 149 (3-4) :157-166
[7]   A Systems Analysis Identifies a Feedforward Inflammatory Circuit Leading to Lethal Influenza Infection [J].
Brandes, Marlene ;
Klauschen, Frederick ;
Kuchen, Stefan ;
Germain, Ronald N. .
CELL, 2013, 154 (01) :197-212
[8]   Reactome: a database of reactions, pathways and biological processes [J].
Croft, David ;
O'Kelly, Gavin ;
Wu, Guanming ;
Haw, Robin ;
Gillespie, Marc ;
Matthews, Lisa ;
Caudy, Michael ;
Garapati, Phani ;
Gopinath, Gopal ;
Jassal, Bijay ;
Jupe, Steven ;
Kalatskaya, Irina ;
Mahajan, Shahana ;
May, Bruce ;
Ndegwa, Nelson ;
Schmidt, Esther ;
Shamovsky, Veronica ;
Yung, Christina ;
Birney, Ewan ;
Hermjakob, Henning ;
D'Eustachio, Peter ;
Stein, Lincoln .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D691-D697
[9]   Immunopathology in influenza virus infection: Uncoupling the friend from foe [J].
Damjanovic, Daniela ;
Small, Cherrie-Lee ;
Jeyananthan, Mangalakumari ;
McCormick, Sarah ;
Xing, Zhou .
CLINICAL IMMUNOLOGY, 2012, 144 (01) :57-69
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22