Configurational entropy of codimension-one tilings and directed membranes

被引:24
作者
Destainville, N
Mosseri, R
Bailly, F
机构
[1] UNIV PARIS 06,F-75251 PARIS 05,FRANCE
[2] CNRS,PHYS SOLIDE LAB,F-92195 MEUDON,FRANCE
关键词
quasicrystals; configurational entropy; partitions; random tilings;
D O I
10.1007/BF02181243
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The calculation of random tiling configurational entropy amounts to an enumeration of partitions. A geometrical description of the configuration space is given in terms of integral points in a high-dimensional space, and the entropy is deduced from the integral volume of a convex polytope. In some cases the latter volume can be expressed in a compact multiplicative formula, and in all cases in terms of binomial series, the origin of which is given a geometrical meaning. Our results mainly concern codimension-one tilings, but can also be extended to higher codimension tilings. We also discuss the link between free-boundary- and fixed-boundary-condition problems.
引用
收藏
页码:697 / 754
页数:58
相关论文
共 37 条
[1]  
[Anonymous], SYMMETRIC GROUP
[2]  
Barnes E., 1899, Q. J. Math, V31, P264
[3]   ROUGHENING TRANSITIONS AND THE ZERO-TEMPERATURE TRIANGULAR ISING ANTIFERROMAGNET [J].
BLOTE, HWJ ;
HILHORST, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (11) :L631-L637
[4]  
BRION M, 1994, SEM BOURB MARCH, V46
[5]  
Comtet L., 1970, Analyse Combinatoire, VVolume 1
[6]  
Coxeter H. S. M., 1973, REGULAR POLYTOPES
[7]   DUALIZATION OF MULTIGRIDS [J].
DEBRUIJN, NG .
JOURNAL DE PHYSIQUE, 1986, 47 (C-3) :9-18
[8]  
DIVENCENZO DP, 1991, QUASICRYSTALS STATE
[9]   QUASIPERIODIC PATTERNS [J].
DUNEAU, M ;
KATZ, A .
PHYSICAL REVIEW LETTERS, 1985, 54 (25) :2688-2691
[10]  
EHRHART E, 1967, CR ACAD SCI A MATH, V265, P5