NaCl/Ca/Al as an efficient cathode in organic light-emitting devices

被引:15
作者
Shi, Shengwei [1 ]
Ma, Dongge [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Grad Sch, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
关键词
organic semiconductors; optoelectronic devices; electrical properties and measurements; alkali metals;
D O I
10.1016/j.apsusc.2005.08.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard NM-bis(1-naphthyl)-NAP-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3)) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/ W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/ Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:6337 / 6341
页数:5
相关论文
共 46 条
[1]   Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors [J].
Abkowitz, M ;
Facci, JS ;
Rehm, J .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (05) :2670-2676
[2]   Charge injection into light-emitting diodes: Theory and experiment [J].
Arkhipov, VI ;
Emelianova, EV ;
Tak, YH ;
Bassler, H .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (02) :848-856
[3]   Polymer/metal interfaces and the performance of polymer light-emitting diodes [J].
Bharathan, JM ;
Yang, Y .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (06) :3207-3211
[4]   LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes [J].
Brown, TM ;
Friend, RH ;
Millard, IS ;
Lacey, DJ ;
Burroughes, JH ;
Cacialli, F .
APPLIED PHYSICS LETTERS, 2000, 77 (19) :3096-3098
[5]   Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes [J].
Brown, TM ;
Friend, RH ;
Millard, IS ;
Lacey, DJ ;
Butler, T ;
Burroughes, JH ;
Cacialli, F .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) :6159-6172
[6]   Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes [J].
Brown, TM ;
Friend, RH ;
Millard, IS ;
Lacey, DJ ;
Burroughes, JH ;
Cacialli, F .
APPLIED PHYSICS LETTERS, 2001, 79 (02) :174-176
[7]   Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers [J].
Campbell, IH ;
Rubin, S ;
Zawodzinski, TA ;
Kress, JD ;
Martin, RL ;
Smith, DL ;
Barashkov, NN ;
Ferraris, JP .
PHYSICAL REVIEW B, 1996, 54 (20) :14321-14324
[8]   Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures [J].
Campbell, IH ;
Hagler, TW ;
Smith, DL ;
Ferraris, JP .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1900-1903
[9]   Impact of the metal cathode and CsF buffer layer on the performance of organic light-emitting devices [J].
Chan, MY ;
Lai, SL ;
Fung, MK ;
Lee, CS ;
Lee, ST .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5397-5402
[10]   Efficiency and stability enhancement in organic light-emitting devices with CsF/Mg:Ag cathode [J].
Chan, MY ;
Lai, SL ;
Lee, CS ;
Lee, ST .
CHEMICAL PHYSICS LETTERS, 2003, 380 (3-4) :298-303