MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance

被引:281
作者
Moriyama, Taiki [1 ]
Ohuchida, Kenoki [1 ,2 ]
Mizumoto, Kazuhiro [1 ,4 ]
Yu, Jun [1 ]
Sato, Norihiro [1 ,3 ]
Nabae, Toshinaga [1 ]
Takahata, Shunichi [1 ]
Toma, Hiroki [1 ]
Nagai, Eishi [1 ]
Tanaka, Masao [1 ]
机构
[1] Kyushu Univ, Dept Surg & Oncol, Grad Sch Med Sci, Fukuoka 8128582, Japan
[2] Kyushu Univ, Dept Adv Med Initiat, Grad Sch Med Sci, Fukuoka 8128582, Japan
[3] Kyushu Univ, Dept Canc Therapy & Res, Grad Sch Med Sci, Fukuoka 8128582, Japan
[4] Kyushu Univ Hosp, Ctr Canc, Fukuoka 812, Japan
关键词
ENDOTHELIAL GROWTH-FACTOR; TUMOR-SUPPRESSOR GENE; COLORECTAL-CANCER; BREAST-CANCER; EXPRESSION; MIR-21; RNA; ADENOCARCINOMA; ACCUMULATION; GEMCITABINE;
D O I
10.1158/1535-7163.MCT-08-0592
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Due to the poor prognosis of pancreatic cancer, novel diagnostic modalities for early diagnosis and new therapeutic strategy are urgently needed. Recently, microRNA-21 (miR-21) was reported to be strongly overexpressed in pancreatic cancer as well as in other solid cancers. We investigated the functional roles of miR-21, which have not been fully elucidated in pancreatic cancer. miR-21 expression was assessed in pancreatic cancer cell lines (14 cancer cell lines, primary cultures of normal pancreatic epithelial cells and fibroblasts, and a human normal pancreatic ductal epithelial cell line) and pancreatic tissue samples (25 cancer tissues and 25 normal tissues) by quantitative real-time reverse transcription-PCR amplification. Moreover, we investigated the proliferation, invasion, and chemoresistance of pancreatic cancer cells transfected with miR-21 precursor or inhibitor. miR-21 was markedly overexpressed in pancreatic cancer cells compared with nonmalignant cells, and miR-21 in cancer tissues was much higher than in nonmalignant tissues. The cancer cells transfected with the miR-21 precursor showed significantly increased proliferation, Matrigel invasion, and chemoresistance for gemcitabine compared with the control cells. In contrast, inhibition of miR-21 decreased proliferation, Matrigel invasion, and chemoresistance for gemcitabine. Moreover, miR-21 positively correlated with the mRNA expression of invasion-related genes, matrix metalloproteinase-2 and -9, and vascular endothelial growth factor. These data suggest that miR-21 expression is increased in pancreatic cancer cells and that miR-21 contributes to the cell proliferation, invasion, and chemoresistance of pancreatic cancer. [Mol Cancer Ther 2009;8(5):1067-74]
引用
收藏
页码:1067 / 1074
页数:8
相关论文
共 36 条
[1]   MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer [J].
Asangani, I. A. ;
Rasheed, S. A. K. ;
Nikolova, D. A. ;
Leupold, J. H. ;
Colburn, N. H. ;
Post, S. ;
Allgayer, H. .
ONCOGENE, 2008, 27 (15) :2128-2136
[2]   MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis [J].
Bloomston, Mark ;
Frankel, Wendy L. ;
Petrocca, Fabio ;
Volinia, Stefano ;
Alder, Hansjuerg ;
Hagan, John P. ;
Liu, Chang-Gong ;
Bhatt, Darshna ;
Taccioli, Cristian ;
Croce, Carlo M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (17) :1901-1908
[3]   MicroRNAs modulate the chemosensitivity of tumor cells [J].
Blower, Paul E. ;
Chung, Ji-Hyun ;
Verducci, Joseph S. ;
Lin, Shili ;
Park, Jong-Kook ;
Dai, Zunyan ;
Liu, Chang-Gong ;
Schmittgen, Thomas D. ;
Reinhold, William C. ;
Croce, Carlo M. ;
Weinstein, John N. ;
Sadee, Wolfgang .
MOLECULAR CANCER THERAPEUTICS, 2008, 7 (01) :1-9
[4]   Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial [J].
Burris, HA ;
Moore, MJ ;
Andersen, J ;
Green, MR ;
Rothenberg, ML ;
Madiano, MR ;
Cripps, MC ;
Portenoy, RK ;
Storniolo, AM ;
Tarassoff, P ;
Nelson, R ;
Dorr, FA ;
Stephens, CD ;
VanHoff, DD .
JOURNAL OF CLINICAL ONCOLOGY, 1997, 15 (06) :2403-2413
[5]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004
[6]   MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias [J].
Calin, GA ;
Liu, CG ;
Sevignani, C ;
Ferracin, M ;
Felli, N ;
Dumitru, CD ;
Shimizu, M ;
Cimmino, A ;
Zupo, S ;
Dono, M ;
Dell'Aquila, ML ;
Alder, H ;
Rassenti, L ;
Kipps, TJ ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (32) :11755-11760
[7]   MicroRNA signatures in human cancers [J].
Calin, George A. ;
Croce, Carlo M. .
NATURE REVIEWS CANCER, 2006, 6 (11) :857-866
[8]   MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells [J].
Chan, JA ;
Krichevsky, AM ;
Kosik, KS .
CANCER RESEARCH, 2005, 65 (14) :6029-6033
[9]   Accumulation of miR-155 and BIC RNA in human B cell lymphomas [J].
Eis, PS ;
Tam, W ;
Sun, LP ;
Chadburn, A ;
Li, ZD ;
Gomez, MF ;
Lund, E ;
Dahlberg, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) :3627-3632
[10]   Oncomirs - microRNAs with a role in cancer [J].
Esquela-Kerscher, A ;
Slack, FJ .
NATURE REVIEWS CANCER, 2006, 6 (04) :259-269